
Kok,  Theodorus  Antonius  Hendrik   (2015)  Development  of   a  Strategy   for   the 
Management   and   Control   of   Multiple   Energy   Sources   within   Series   Hybrid 
Electric Vehicles. Doctoral thesis, University of Sunderland. 

Downloaded from: http://sure.sunderland.ac.uk/id/eprint/6580/

Usage guidelines

Please   refer   to   the  usage guidelines  at  http://sure.sunderland.ac.uk/policies.html  or  alternatively 
contact sure@sunderland.ac.uk.



 

 

 

 

 

Development of a Strategy for the Management and 

Control of Multiple Energy Sources within  

Series Hybrid Electric Vehicles 

 

Theodorus Antonius Hendrik Kok 

 

 

 

 

A doctoral report submitted in partial fulfilment of the requirements of 

the University of Sunderland for the degree of Doctor of Philosophy 

 

 

August 2015 

 

 

 



 

  
ii 

 
  

 

 

 

 

 
 

Philippa - for unwavering dedicated support, I love you 

Isla and Elwyn - for always smiling and making my days brighter 

 
  



 

  
iii 

 
  

 

Acknowledgements 

I want to thank my manager and Director of Studies Adrian Morris for the 

opportunity offered, now 6 years ago, and for the time and dedication he has 

given me to be able to complete this project. I also would like to thank Professor 

Alan Wheatley for supporting the opportunity and his time to this project. 

The journey has been an interesting one and has taught me many things, but 

without the teachings, support and understanding from my parents I would have 

never made it this far. A big thanks to my Dad and his wife for all practical 

advice and my Mum and her husband for a listening ear and the time to relax. I 

would like to thank my sisters, my brothers and their families and my friends in 

the Netherlands, England and around the world. Without their support I would 

not have been able to complete this project. I say thank you for keeping me 

sane.  

I would like to thank all the staff at AMAP for their support and contributions. A 

special thanks to Phil Johnson, for IT support in both hardware and software, 

Helen Scott for her assistance with statistics, Dr Michael Knowles for his overall 

knowledge on engineering subjects and Dr. Kevin Burn for his contributions on 

control techniques.  

Lastly, I would like to thank the University of Sunderland as my employer and 

educational institution. 

 

  



 

  
iv 

 
  

Abstract 

The battery in an EV is designed according to a power to energy ratio and is a 

trade-off in the design of the pack. It also suffers from effects such as rate 

capacity effect, ripple effects and inefficiency under charging. These effects 

result in losses through which the capacity and life span of the batteries are 

compromised affecting range and drivability.  

In this thesis a novel development path resulting in a novel Power and Energy 

Management Strategy (PEMS) is presented. The effects of (dis)charging a 

battery are researched and converted to an energy optimisation formula and 

result in reduced power demand for the converter which reduces weight. The 

resulting Power Management Strategy (PMS) aims to recover energy more 

efficiently into UC while responding fast to a change in demand. 

The effects of converters on the battery current ripple are researched and 

discussed, resulting in an optimal topology layout, improved battery life and 

reduced losses. Through the use of Markov Chain analysis and a newly derived 

Bias function a predictive Energy Management Strategy (EMS) is developed 

which is practical to use in EVs.  

This resulted in a PEMS which because of the fast PMS results in a fast 

response time. The use of Markov Chain results in predictive EMS and 

improves the efficiency of the energy sources and allows the design to be 

reduced in size. 

Through the design methodology used the parallel topology (the battery 

converter parallel to the UC Module) was rated preferred choice over battery 

only and battery with UC Module. The rating was based on capacity, ripple 

control, weight, 10 year cost, potential for motor controller efficiency 

improvement, range and efficiency.  
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The combination of method and PEMS resulted in an improved life expectancy 

of the pack to over 10 year (up from 7) while increasing range and without 

sacrificing drivability. 
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Nomenclature 

Notation Description Unit  

SoC State of Charge - [%] 

Q Capacity Ampere-hours [Ah] 

  current (DC) Ampere [A] 

  Current (AC) Ampere [A] 

t Time Seconds [S] 

h hourly time interval hours [h] 

  Energy Joules  

Watt-Seconds 

Watt-hour 

kilo-Watt-hour 

[J] 

[Ws] 

[Wh] 

[kWh] 

  Power Watt 

kilo-Watt 

W 

kW 

C Capacitance Farad [F] 

U, V Voltage Volt [V] 

L Inductance Henry [H] 

D, d Duty Cycle - - 

T Time period Seconds [S] 

   Current ripple Ampere [A] 

f Frequency Hertz [H] 

   voltage ripple Voltage [V] 

  Resistance Ohm [Ω] 

X Reactance Ohm [Ω] 

  Efficiency - [%] 

  Transition matrix of possibilities - - 

  probability - - 

B Bias vector - - 

  State of probability - - 

    Tractive Effort Newton [N] 

    Force through rolling resistance Newton [N] 

    Force through aero dynamic drag Newton [N] 

    Force through incline / decline Newton [N] 

    Lateral acceleration force Newton [N] 

1.05 inertia effort on lateral acceleration 
force 

Newton [N] 

    rolling resistance coefficient - - 

  mass of the vehicle kilogram [kg] 
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  gravitation constant metre per second 
squared 

[m/s
2
] 

  air density  kilogram per meter 
cubed 

[kg/m
3
] 

  Frontal surface area metre squared [m
2
] 

   Drag Coefficient - - 

  Velocity metre per second [m/s] 

  Angle of the slope degrees [°] 

  Acceleration metres per second 
squared 

[m/s
2
] 

 

  Gear ratio - - 

  Tyre radius metre [m] 

   Torque at the motor Newton-metre [Nm] 

  Angular speed at the motor radians per second [rad/s] 

  Vehicle velocity meters per second [m/s] 

Kp proportional control variable  - - 

Ki integral control variable - - 

Ma Compensation ramp variable - - 

Ibat_max Temporary limit to battery current Ampere [A] 

Idem Bus current demand Ampere [A] 

Iuc UC current  Ampere [A] 

Ibat battery current Ampere [A] 

Vuc_max UC maximum voltage Volt [V] 

Vuc_min UC minimum voltage Volt [V] 

Vuc_target  / 
Vuc_nom 

UC target voltage Volt [V] 

Cycle Range Driveable range on a full battery 
charge 

kilometre / cycle km / 
cycle 

    Power lost in internal Resistance of the 
UC 

Watt [W] 

     Total UC power  Watt [W] 

          Converter power losses Watt [W] 

      Total Converter Power Watt [W] 

    UC Efficiency - [%] 

      Converter Efficiency - [%] 

       UC Module Efficiency -  [%] 
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Abbreviations 

EV Electric Vehicle 
BEV Battery Electric Vehicle 
HEV Hybrid Electric Vehicle 
ICE Internal Combustion Engine 
FC Fuel Cell 
DG Diesel Generators 
UC Ultra Capacitor 
SC Super Capacitor 
EDLC Electrical Double Layer Capacitor 
DC-DC Converter Direct Current to Direct Current Converter  
UC Module Combination of UC and DC-DC Converter 
PEMS Power and Energy Management Strategy 
PMS Power Management Strategy  
EMS Energy Management Strategy 
SPS SimPowerSystems, toolbox within Simulink 
SoC State of Charge – present capacity of the battery 
SoD State of Discharge – measure of charge removed  
DoD Depth of Discharge 
SoH State of Health 
BMS Battery Management System 
GhG Greenhouse Gas 
VC Vector Control 
FOC Field Oriented Control 
AEV All Electric Vehicle 
RLC  Resistor – Inductor – Capacitor network 
RC Resistor – Capacitor network 
CCM Continuous Conduction Mode 
DCM  Discontinuous Conduction Mode 
DG Dynamic Programming 
MPC Model Predictive Control 
RB Rule Based 
NN Neural Networks 
ECMS Equivalent Consumption Minimisation Strategy  
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Chapter One  

 Introduction 

1.1. Motivation 

The Battery Electric Vehicle (BEV) is seen as an important component and a 

learning step to the introduction of Fuel Cell (FC) vehicles (Bitsche and 

Gutmann, 2004, NAIGT, 2009). The reason for using FC vehicles is the speed 

of fuelling which is similar to that of current Internal Combustion Engines (ICE). 

Battery fast charging times are around 20-30 minutes and will enable a range of 

100 miles (compared to 300+ miles in 5 minutes for diesel ICE).  

One reason for viewing the BEV as a stepping stone to FC vehicles is due to 

the current price of FC systems. These costs may be reduced by using a 

smaller FC system supplemented with a supportive or multiple supportive 

systems (battery and/or ultra capacitor combination). The management of these 

supportive systems and their interaction is the focus of this thesis.  

The cost of the battery pack ($400-$600 /kWh (Schoenung, 2011)) means that 

BEVs are expensive. The cost of the battery pack is defined by the need for 

energy to ensure suitable range, the need for power to achieve required 

acceleration and the need for durability (Burke, 2002, Bradley and Frank, 2009). 

Any reduction to the size of the pack without sacrificing range and driveability 

would thus be an improvement. The aim for the electric vehicle system is to 

improve their performance: size, temperature and efficiency (ieee.tv, 2010). The 

benefits of optimisation include reduced discharge and charge losses over time 

with the age of the battery.  
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Crolla et al (2008) has identified 3 areas for additional research that are more 

specific to electric vehicles:  

1. driveability – optimisation research is currently based around driving 

cycles, but it is widely acknowledged that people are not likely to drive 

exactly that way 

2. braking behaviour – braking energy can be won back but these systems 

should not put the drivers lives on the line or affect driveability 

3. practical design – research currently done leaves many implementation 

issues; the practical designs should not affect safety or driveability  

The main criteria used when considering buying a vehicle appears to be price 

and performance (Lane and Potter, 2007). The CENEX - The Smart Move Case 

Studies report stated that Electric Vehicle (EV) utilisation was increased through 

opportunity charging (Carroll, 2011), the participants rated the performance of 

EVs over the ICE equivalent. An important factor of the research into 

optimisation of the EV drive train is to maintain driveability of the vehicle in such 

a way that people want to drive it. EVs do not have the range people have come 

to expect from their personal transport and this so called “range anxiety” 

remains a worry since people’s expectations are very rigid (Valentine-Urbschat 

and Bernhart, 2009).  

A fuel cell system alone, while able to output high power, responds slowly to a 

change in power demand. FCs, unlike batteries, are not able to accept charge 

(from regenerative energy). To increase their efficiency it would be best to use a 

smaller stack and operate it at its most optimum point while storing any 

generated energy that is not directly used temporarily in batteries and use these 

batteries to cover the peak power events (Simoes et al., 2014). Batteries on 

their own lose additional potential capacity under high discharge currents 
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(Donghwa et al., 2011). Ultra Capacitors (UC) would be able to supplement 

peak power demand since their losses under high demands are significantly 

less but their low energy density limits the time they can supply their power, 

which means they add weight if the efficiency of their use is not high enough. 

The peak power smoothing achieved through the use of UCs can thus improve 

available battery capacity. However in a vehicle any additional weight leads to 

an increase in power demand to maintain the same drive characteristics. This 

additional required power would result in an increased level of current draw 

from the battery. It is therefore necessary to not just simply add the UC and 

converter to the vehicle but to free up an equal amount of weight (or more) for 

the system to be beneficial or to gain a sufficient increase in driving range to 

justify the added weight. 

Unlike the voltage level of a battery, which is often considered to be constant, 

the voltage level of an UC changes faster with current drawn (because of the 

lower energy density) as does the voltage level of a FC systems under load 

(Larminie and Dicks, 2003). In order to work with these changing voltage levels, 

Direct Current to Direct Current (DC-DC) converters are introduced. These 

converters can step up (boost) or step down (buck) the changing input voltage 

level to a constant output level.  

These combinations of a slow energy source and a faster power source will 

become common because of the potential for overall improved efficiency, 

system stability, reduced size and reduced component size, such as in the use 

of hydraulic systems (Bender et al., 2013), FC systems (Thounthong et al., 

2009a) or electric generators (Di Napoli et al., 2002b). This combining of 

different energy and power sources will also be found in battery packs using 
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different technologies to support each other, for example, non-metal-air packs 

supporting metal-air technologies (Stewart et al., 2012b, Stewart et al., 2012a).  

This thesis focuses specifically on the BEV drive train with a supporting power 

source in the form of an UC with DC-DC converter. It analyses the weaknesses 

of the batteries and the supporting role of the UC. The trade off in battery pack 

design (energy versus power ratio) is the result of the high current demand the 

battery pack has to supply and the frequency at which this demand occurs 

(Donghwa et al., 2011). The additions of a supporting power source is not 

without challenges such as: the power source does not necessarily add the 

same energy to weight ratio as a battery (often less energy for more weight) 

which requires the added components to provide an energy saving through 

other means. This means that the additional components should be designed 

towards some optimised cost function in order to keep its weight low and its size 

small. The reason for this is that in automotive design, any additional weight 

directly results in loss of efficiency. As the mass of the vehicle increases 

acceleration, cruising and deceleration are directly affected because an 

increase in mass would require additional energy and power to maintain the 

proposed driveability. 

1.2. Problem Scope 

The scope of this project is to design and test a novel Power and Energy 

Management Strategy (PEMS) for use in BEVs. The aim is to reduce the overall 

size of the energy components of the drive train without sacrificing the range or 

driveability. The driveability is characterised by the power required and the 

range by the available energy. Reducing the size of the battery pack to free up 

space for a support mechanism to increase power would reduce the available 

energy. Reducing the power rating of the battery would allow for an increase in 
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available energy (but at lower peak power demand) affecting driveability. The 

combination of a battery pack with an UC module (UC with DC-DC Converter) 

potentially allows for the required power demand to retain driveability while at 

the same time reduce the power as seen by the battery resulting in an increase 

of available energy. 

The new PEMS optimises the usage of power between the energy sources, 

while optimising energy efficiency resulting in increased driving range without 

increasing the overall weight of the sources. As a result the new PEMS also 

improves battery life expectancy without affecting driveability.   

This research extends to the topology used for the drive train and has an 

additional aim in reducing the battery ripple effects which will result in improved 

battery life expectancy. The scope of the problem is multi faceted:  

i. Reduce the size and weight of the battery pack without reducing range or 

affecting driveability 

ii. Add specific components that allow the reduction in size of the battery 

pack.  

a. The added component weight should be equal or less than the 

combined weight of the removed cells.  

b. The added cost of the components should be equal or less than 

the cost saving as a result of the removed cells. 

iii. Design of a PEMS to control the different sources (battery and UC 

module) such that the desired optimisations, discussed previously in this 

section, are achieved 

This thesis will include a holistic approach which will include the individual 

components: Battery, UC, DC-DC Converters. 
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1.3. Hypothesis 

An improvement in Power and Energy Management Control Strategy will result 

in the downsizing of drive train component for electric vehicles, without 

sacrificing driveability or range. 

1.4. Methodology 

The methodology employed starts with an extensive literature review detailing 

the strength and weakness of the individual drive train components and their 

individual models.  

The rate capacity effect of batteries is investigated to acquire an efficiency 

formula for batteries. This is validated through the author’s own research. 

Efficiency formulas will also be established for use with converters and UCs. 

This will enhance the simulations by being able to estimate overall efficiency of 

the drive train.  

In this thesis the interaction of power and energy sources through different 

topologies and the behaviour of different popular topologies on battery current 

ripple will be investigated. Part of this problem definition is the need to establish 

the predicted power and energy requirements in a given drive cycle. This 

knowledge will enable the author to optimise the size of the battery pack and 

UC module. Drive cycles will be analysed for energy management optimisation 

through the use of Markov Chain analysis. The Markov Chain analysis is not 

computationally intensive and as such provides a practical method to design a 

Power and Energy Management Strategy (PEMS).  

Based upon an extensive literature review and methodical research on battery 

rate capacity effect, topology battery current ripple analysis and drive cycle 

analysis a new PEMS is developed. The development process results in a new 
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set of design rules to optimise the UC Module and reduce weight, volume and 

cost. 

Using the individual models found in the literature complete drive train models 

are created and simulated using the Matlab / Simulink software environment. A 

number of simulations will be carried out using Mathworks Simulation packages 

Matlab / Simulink and additional toolboxes. These toolboxes include: 

SimPowerSystems (SPS), Symbolic Math toolbox, Simulink Control Design, 

Simulink Design Optimisation. 

Finally full drive train simulations will be presented simulating different 

topologies over different drive cycles. The results will be analysed for efficiency, 

weight, volume and cost. The results and outcomes will be discussed and 

validated against the hypothesis. 

1.5. Key Contributions 

The key contributions in this thesis are: 

 Method to design an optimised power train with multiple sources while 

targeting driveability, which can be extended to online adjustment  

 A novel Power Management Strategy (PMS) that includes the 

Operational Control  

 The new PMS allows for continued driveability even when the UC 

module is depleted but rewards ECO driving behaviour by further 

increasing efficiency 

 A novel Energy Management Strategy (EMS) to optimise the  

contribution of each energy source through the use of Markov Chain 

analysis 

 Increased knowledge on the effect of topologies on battery current ripple 
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  Research and analysis showing the reasons for a preference for a 

parallel topology over a cascaded topology 

 Research and analysis showing a preference for using converters in 

parallel configuration 

 Research showing the effect of battery energy loss under constant load 

conditions resulting in a formula for battery efficiency based on C-rating 

 Method to assess the efficiency of batteries under simulation. 

 A feed forward control for bus monitoring has been designed which will 

keep the bus voltage at a constant level under regeneration and does not 

require a torque reference to function. This solution is ideal for simulation 

purposes. 

1.6. Thesis Outline 

Chapter two describes the literature review in which the different BEV drive train 

components are described. This includes, the battery, the UC and the DC-DC 

converter, their control and power and energy management strategies. It also 

describes the models necessary for simulation in Matlab / Simulink.  

In chapter three the topology selection for use in simulation will be explained, 

the battery efficiency markers will be analysed to establish an efficiency formula 

related to battery C–rating to enhance simulation results. In this chapter the 

efficiency formulas for the UC module and converters in general will be 

explained. The chosen drive cycles will be explained as well as the final 

simulation setup.  

Chapter four describes the development of the Power Management Strategy 

and the simulation setup. Chapter five shows the use of Markov Chain analysis 

and the development of a Bias variable which sets up the design of the Energy 
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Management Strategy as well as the parameters for the development of the 

drive train components (Battery, UC, Converters).  

Chapter six will discuss the results of the simulation. In chapter seven the 

hypothesis will be verified and closing thoughts will be presented. 

1.7. Publications 

HU, Z., REN, Q., CROLLA, D. A., MORRIS, A., KOK, D. & HU, M. (2010) 

'Design and Implementation of Power Management System for Fuel 

Cell and Battery Powered Buses', 25th World Electric Vehicle 

Symposium and Exposition (EVS25). Shenzhen, China, 5-9 November 

2010, p. 5 

Knowles, M., Kok, D., Baglee, D., Morris, A. (2012) Design and Development 

of a Electric Vehicle Drive Train Test Bed, presented at the Condition 

Monitoring and Machine Failure Prevention Technology (BINDT), London 

UK 

KOK, D., KNOWLES, M. & MORRIS, A. (2012) 'Building a Driving Simulator 

as an Electric Vehicle Hardware Development Tool', Driving 

Simulation Conference 2012. Paris, 325-333 

KOK, D., MORRIS, A. & KNOWLES, M. (2013) Novel EV drive train topology 

- A review of the current topologies and proposal for a model for 

improved drivability:Power Electronics and Applications (EPE), 2013 

15th European Conference on. 2-6 Sept. 2013.  

KOK, D., MORRIS, A., KNOWLES, M. & BAGLEE, D. (2013) Converter 

simulation using SimPowerSystems: a comparison of drive cycles 

and control strategies, Renewable Energy Research and Applications 

(ICRERA), 2013 International Conference on. 20-23 Oct. 2013.  



 

  
10 

 
  

Kok, D., Morris, A., Knowles, M. and Baglee, D. (2015) 'Battery ripple effects 

in cascaded and parallel connected converters', IET Power 
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Electric Vehicles, Keynote presentation at the Next Generation 
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Chapter Two  

 Literature Review 

A Battery Electric Vehicle (BEV) drive train generally consists of an energy 

source, a motor controller and a motor (Chan, 2007, Høyer, 2008). Adding DC-

DC Converters in combination with UCs are considered an option to improve 

the performance of the energy source for future EVs. This is achieved by 

allowing energy sources with different power response rates to work together 

through the use of such converters.  

The management of different power and energy sources in BEV drive trains are 

an important feature for future vehicles; especially the management of energy to 

weight ratio and the way in which the available power is optimised to achieve 

maximum energy flow.  

In this chapter the different components of the drive train are described and 

analysed. First the different energy sources will be discussed followed by the 

converter and then the motor and control after which different topologies are 

described. These topologies are combinations of energy sources and / or power 

sources and converters. Finally the control and management strategies are 

discussed.  

2.1. Introduction 

A common feature of different energy sources is that they each operate at 

highest efficiency within a specific operating range. Outside of this their 

performance is reduced for a variety of reasons, such as sensitivity to changes 

in demand (Battery, FC) or by having to function under low load (FC and ICE). 

In electrochemical devices, such as FCs (and to a lesser extent batteries but 
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still significant), the chemical process has inertia and as such does not respond 

immediately to changes in demand. This inertia can also be observed in Internal 

Combustion Engines (ICE) and Diesel Generators (DG). They are generally 

inefficient under varying and low loads (Bose et al., 1996). This inertia effect 

takes time to overcome. In a FC system it takes time for the chemical reaction 

to build up during which the voltage across the stack will drop under the applied 

demand (Larminie and Dicks, 2003). It takes time for the FC to increase the 

airflow and thus increase the current output, there is the potential that the bus 

voltage may drop below operating specification or even that the demand is so 

high that fuel starvation occurs. In order to overcome this delay a source that is 

capable of a faster response can be employed to assist during these moments 

of transition. It is expected that FC systems will operate in conjunction with 

batteries to provide responsive acceleration and reduce the size of the 

necessary FC stacks but batteries have their own limitations under high current 

demand (Bitsche and Gutmann, 2004). The UC has low energy density but 

does not suffer from the electrochemical effects that FCs and batteries have as 

so may prove an ideal supporting system for short period of high demands. In 

this chapter the limitations to the battery will be explained as well as the benefits 

of the ultra capacitor and DC-DC converters. The control strategies for different 

drive train topologies will also be discussed. 

2.2. Battery 

A battery is an electro-chemical device, in which chemical energy is converted 

into electricity. The energy the battery holds is given in Watt-hours (Wh) or kilo-

Watt-hours (kWh) which is the capacity in Ampere-hour (Ah) of the battery times 

its average or nominal rated voltage. A measurement to indicate how much 

capacity is left in the battery is called the State of Charge (SoC) and is 
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measured on a range of 0% (empty) to 100% (full) and is calculated by the 

amount of current drawn over time; i.e. the capacity removed from the battery 

(Husain, 2003). 

Another metric used in energy sources for comparison from one source to 

another are the specific energy (Watt-hour per kilogram) and specific power 

(Watt per kilogram). Figure 2.1 shows the difference for various technologies 

between specific energy and specific power. 

 
(Thounthong et al., 2009a) © 2009 IEEE 

Figure 2.1: Specific power versus specific energy   

 

There are various battery technologies which can be used in EV applications 

such as: Lead-Acid, Zebra, Nickel Metal Hydride, Lithium-Ion (Krutak et al., 

2013). A discussion on the different technologies is outside the scope of this 

thesis. A good overview with detailed applications is given in (Divya and 

Østergaard, 2009). In this thesis the main battery technology discussed is the 

lithium-ion battery which is used in the Nissan LEAF among other vehicles.  

In a standard BEV drive train (battery + motor controller + motor) the battery 

supplies power as the motor controller demands it. This includes sudden 
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acceleration and braking which present short term peak power demand as well 

as the low frequency components of the inverter. These peak power moments 

have the following effects on batteries:  

 Rate Capacity effect, where the capacity is reduced at high discharge 

rate (Donghwa et al., 2011) 

 Intercalation (the insertion of lithium ions in the anode), which at high 

currents is limited and increases the resistance at the anode and thus 

increases heat (Jongh and Notten, 2002) 

 Plating effect (deposition of lithium on the anode of the battery). This 

reduces the reaction area at the anode and reduces the amount of 

available lithium ions. In worst case, this deposition can cause a short 

circuit in the battery which would result in complete battery failure (Jongh 

and Notten, 2002, Miller et al., 2009b)  

Other issues that affect Battery State of Health (SoH) arise from the effects of 

current ripple as a consequence of switching frequencies, such as arises from 

the inverter:  

 Low frequency ripple (<1kHz) results in greater ohmic resistance (Kowal 

et al., 2010), increases heat generation in the cells and can affect cell 

balancing systems (Divan, 1989, Bala et al., 2012) 

Or from higher switching devices: 

 High frequency ripple (> 1kHz) results in higher inductance (Kowal et al., 

2010) and can potentially cause skin effects (unequal distribution of ac 

current within a conductor) and proximity effects (the current through one 

conductor affects the behaviour of another conductor) (Jin et al., 2010) 

In the case of a lithium-ion battery pack, typically used in BEV applications, high 

current peaks increase ohmic losses which leads to increased temperature and 
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as a consequence reduced battery life (Harris et al., 2010, Di Napoli et al., 

1999).  

A ripple will be present in inductors and capacitors as a result of the switching 

nature of converters and inverters. A high frequency current ripple with a high 

level of energy can cause skin and proximity effects both of which increase 

resistance of the battery (Jin et al., 2010). An increase in resistance leads to an 

increase in heat generation which is a major factor in battery aging (Lacey et al., 

2013, Wang et al., 2014). In fuel cells this ripple increases aging effects (Gerard 

et al., 2010) as well as losses and fuel waste (Ferrero et al., 2012).  

Reducing the current input ripple of a converter, as seen by the FC, is an 

important field of research since the effect of double-layer capacitance defines 

the behaviour of the transfer of electrons and ions. The behaviour prevents 

(part) functioning of the FC as a result of current ripple (Bard and Faulkner, 

2000, Ksiazek and Ordonez, 2014). Hence, not only is a small ripple desired but 

also the knowledge that, that ripple remains small. As a consequence it is 

recommend that battery current ripple should be kept to below 10% of rated 

current (Qing-Chang et al., 2012).  

In Figure 2.2 two different discharge rates are shown for the same battery. A 

battery under discharge experiences different effects (polarisations) as marked 

on the graph. As can be seen the higher discharge current results in a steeper 

drop in the 3 identified regions as well as less available energy. 

Temperature and discharge rates also affect the behaviour of this curve 

(Doerffel and Sharkh, 2006). As remarked by Onar and Khaligh (2008), cycling 

of batteries at high C ratings (quickly charging and discharging at high currents) 

causes additional friction in the battery which reduces capacity and increased 

heat generation.  
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Figure 2.2: Discharge curve for different discharge rates 

 

2.2.1. Temperature effects on batteries 

The temperature affects battery performance in the following ways: 

 ... Electrochemical system; 

 Round trip efficiency; 

 Charge acceptance; 

 Power and energy capability; 

 Reliability; 

 Life and life cycle cost. 

(Pesaran, 2002, p. 377) 
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It is reported that the optimum temperature range for lithium-ion phosphate 

batteries is between 25 and 40 degrees centigrade (Pesaran, 2002). At 

temperatures below 20 degrees a reduction in capacity can be observed 

(Baglee et al., 2014) while at temperatures above 40 degrees the rate of aging 

is increased (Niculuţǎ and Veje, 2012) As a result thermal energy management 

is very important to the life time and behaviour of the battery (Niculuţǎ and Veje, 

2012). Thermal management employs the following techniques: 

 Air / liquid cooling by providing a flow of air / liquid which transfers heat 

away from the battery packs, but not necessarily equally distributed (Ji et 

al., 2013) 

 Phase Change Material (PCM), a material which changes its state under 

the influence of heat and as such removes heat away from the battery 

pack and is able to reinsert heat when the pack cools down and the state 

returns to its original (Al-Hallaj et al., 2005).  

The latter technique is not common in that no reference of commercial use has 

been found but research is increasing since first being proposed in 2005 and is 

now focussing on how the material controls the temperature and which material 

performs best (Ling et al., 2014).  

In cold climates it is actually necessary to warm the batteries to avoid increased 

losses as a result of reduced flow of the electrolyte (Miller et al., 2008) using 

techniques as heating elements or AC heating - a high frequency (10kHz) and 

high current (60A) is used to pre-heat the battery to operating temperature from 

-40°C in 3 minutes (Pesaran et al., 2003). 

Heat generation in a battery is higher during fast charge / discharge cycles 

compared to constant supply at a lower level. Reducing the peak power seen by 

the battery reduces the current and internal stresses on the battery which 
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reduces the temperature increase. By using an UC module it is possible to 

reduce the effects of peak power events due to fast demand changes. This 

represents two benefits an UC module can provide (Rao and Wang, 2011). As a 

result, reducing peak current demand will improve the batteries expected life 

span.  

2.2.2. Regenerative effects on the battery 

A battery can accept regenerative energy, much like it would accept charging 

energy but if the charging time is below 20 seconds the round trip efficiency of 

charge acceptance versus discharge is less than 60%. At around 30 seconds 

this round trip efficiency rises to around 92%. (Miller et al., 2009a). This energy 

is lost in the battery’s greater ohmic resistance as a result of the low frequency 

ripple (Kowal et al., 2010). In other words, lithium-ion batteries do not recover 

energy efficiently if the regenerative period is short. 

2.2.3. Life span 

Battery life span is measured in either one of two methods: cycle life (cycles) or 

calendar life (years). The end is defined as 80% of initial full charge remaining 

and the target for manufacturers of battery packs is 80% capacity remaining 

after ten years (Makansi and Bergholtz, 2010).  

The vehicle is expected to have a life span of fifteen years and 180 000 miles 

(290 000 km). The battery pack is designed to last the life time of the vehicle but 

some suggest a full replacement is necessary to maintain continued operating 

range (Aguirre et al., 2012). Leuenberger and Frischknecht (2010) anticipates 

that the battery pack will be changed at least once in 93 000 miles (150 000 

km). Ortuzar (2005) estimates the life span of a Lithium-Ion battery in HEV at 

six years and the vehicle at twelve years. It seems reasonable to assume that 
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the battery lifespan has increased since 2005. Van den Bossche et al. (2006) 

choose a life span of 112 000 miles (180 000 km) which was a result of 

choosing 3 000 cycles at 80% DoD (at 60 km per discharge), which in turn at 12 

000 miles (20 000 km) per year (Average Annual Car Miles UK, 2014) would 

result in a life span of around nine years. The value calculated based on the 

information provided by Van den Bossche et al. (2006) was felt to be optimistic 

because more recent work suggests a lower life span, for example, Gerssen-

Gondelach and Faaij (2012) state that the lifetime of a battery pack is 

approximately seven years. 

The life expectancy of a battery is subject to operating temperature and peak 

power demand over the life of the battery. The main contributors to battery life 

span degradation are: temperature, charge / discharge rate, average state of 

charge and change in SOC (i.e. depth of discharge) (Lacey et al., 2013).  More 

aggressive driving results in higher peak demands, which in turn results in 

higher battery pack temperature, which results in faster aging of the pack. For 

analysis within this thesis the life span of the battery has been chosen as seven 

years mirroring Gerssen-Gondelach and Faaij and Leuenberger and 

Frischknecht.  

2.2.4. Battery size 

Another factor in the choice of battery is its amp-hour rating, which will increase 

in the future as can be seen from Figure 2.3. The Lithium-Sulphur batteries 

have shown good practical energy but at the time of writing are not fully in mass 

production (OXIS Energy, 2014). Other battery technologies suitable for BEV, 

such as Lithium zinc and Lithium air, are not expected to be available until 2020 

at its earliest (Newton, 2012). 
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(Hampson-Jones, 2012) © 2012 IET 

Figure 2.3: Future expectation of battery specific energy  

2.2.5. Sizing the battery for EV 

In 2004 the specification of a small electric vehicle could be described as: a 

driving range of around 60 miles (100 kilometre), 25-30kW peak power, pack 

weight of around 120kg and a pack voltage of around 300V (Bitsche and 

Gutmann, 2004).  

In 2013 this has been adjusted to: 100 miles (about 160km) which requires 

energy storage of around 20 - 40kWh, peak power range of 50-100kW and a 

series voltage of 300 to 500 volt (Tie and Tan, 2013). One reason for this 

increase is due to increased battery capacity. As discussed earlier, the energy 

density of the battery has increased (more Wh per kilogram). This has resulted 

in an increase in energy storage while not increasing the weight of the pack.  

The sizing of the pack is thus a trade-off between expected range and pack 

weight, which, in turn has a bearing on acceleration and driveability. The size of 

the pack is also a compromise in design between available energy and useable 

power, with batteries tailored for power demand and not necessary for available 

energy (Bradley and Frank, 2009). Hybridization of the battery pack would 
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potentially allow the battery to be designed for energy, increasing the available 

energy in the same volume and weight of a battery. The required power can be 

supplemented with a UC + converter setup (Miller et al., 2009a). One reason for 

the trade off between energy and power is that a vehicle requires a certain 

amount of power for acceleration, with faster acceleration requiring higher 

power. If a system can be designed that allows for appropriate acceleration with 

the peak demand deferred from the battery to an auxiliary supply, then batteries 

could be designed for a lower power to energy ratio, which increases battery 

energy content. The required power from the battery (the main source) under 

cruising conditions should be within the allowable range of the battery such that 

the additional weight of the UC module does not cause the power demand to 

increase above this set maximum. 

There are continuous discussions on the expected range of a BEV. People 

have come to expect 300+ miles range from conventionally fuelled vehicles, 

which with technology of today using only battery is not possible (taking in 

account affordability and driveability). A large pack is heavy and will affect 

performance. Another issue BEV vehicles face is charging time: the larger the 

pack the longer the charging time. (Tie and Tan, 2013) provide a detailed 

description of current and proposed chargers for BEV, Figure 2.4: 

 

 
(Tie and Tan, 2013) © 2013 Elsevier 

Figure 2.4: Classification and technologies of available EV charging stations  
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In the UK, a 24kWh battery pack could be charged at home, over night, using a 

mode 1 charger since most houses would be able to accommodate this. This 

would result in 3.3 kWh charging for 6-8 hours for a full pack. Since 24 kWh can 

provide a range of around 100 miles a pack 3 times its size (assuming the 

weight remains the same) would give the coveted 300 miles. However, home 

charging would become top-up charging due to the time it would take to charge 

the batteries from a mode 1 charger. Fast chargers could be installed which 

would increase the demand from the grid which substations would not be able 

to support yet (and probably not for the foreseeable future) on a house by 

house installation. 

Currently most installed fast chargers are level 2 (mode 3), allowing a 24kWh -

100 mile- pack to be charged in 20-30 minutes up to 80% SOC. In theory a 300 

mile pack could fast charge in 1-1.5 hours up to 80% SOC. Ultra fast charging 

could reduce this time, but the high current this requires could increase battery 

aging rate as well as result in significant temperature increases at stand still, 

when air cooling might be used at pack level.  

2.2.6. Battery Management System 

The operating range of the battery pack depends on its single cell range and 

how many have been placed in series. However due to manufacturing 

tolerances the internal resistance differs a little from battery to battery. This 

difference in internal resistance means that each cell experiences different 

losses (          ). These losses are cell dependent and result in less charge 

stored when charging or more charge lost when discharging. This means that 

while at the beginning a string of cells might have been equally charged 

(showing equal voltage per cell) over time this is no longer the case potentially 

resulting in unsafe cell behaviour (under voltage or over voltage conditions). 
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These discrepancies, which are exacerbated through the aging process and 

temperature differences, while small, need to be compensated for. This can be 

done through the use of a Battery Management System (BMS). In basic 

principle, a BMS removes some of the excess charge from the cell with the 

highest voltage and either burns it or transfers it to a lower voltage cell. A 

reason to keep the length of strings short is to reduce the complexity of the 

BMS (Xing et al., 2011). In their comprehensive review of battery balancing 

systems Jian et al. (2008) show that most simple balancing systems only 

influence the cell directly adjacent to the unbalanced cell. More complex 

balancing systems use switching topologies to temporarily store energy in a 

capacitor or inductor and then switch between the highest and lowest cells. In 

these systems there is use of at least a single inductor but more often multiple 

transformers, and converters which inherently add to weight and complexity of 

the overall system. The benefit of the BMS is the equal cell voltage from one 

cell to the next; i.e. the whole string has a stable voltage which improves energy 

density and voltage stability. The latter allows for reducing of the number of 

cells per string which reduces weight, provided the BMS does not increase the 

weight more than the reduction as a result of the shorter string.   

2.2.7. Modelling the battery 

There are 3 basic ways of realising a battery model: electrochemical, 

mathematical (black box model) and electric circuit approximations (Tremblay et 

al., 2007). Of these three the best approach to calculate SoC is the electric 

circuit approximation since the other 2 methods are computationally intensive or 

require in depth information about the battery (Kroeze and Krein, 2008, 

Tremblay, 2009, Dong et al., 2011). Dong et al. (2011) concludes that 

impedance models (electric circuit models) are highly suited for BEV drive train 
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battery modelling because of the reasonable level of accuracy, their high 

dynamic range and scalability. 

The electrical model sees the battery as a non ideal voltage source and can as 

such be represented as a voltage source with internal resistance (Floyd, 1997), 

see Figure 2.5. This model can be further expanded by including more 

components representing effects such as self-discharge and low frequency and 

high frequency impedance, such as shown by (Rosario, 2007, Kroeze and 

Krein, 2008, Jin et al., 2010). This electrical model also forms the basis for any 

thermal models and aging models (Kowal et al., 2010). Newer battery models 

include: capacity fading models as proposed by (Long and Bauer, 2013).  

This thesis focuses on the optimisation of control and energy management and 

as such not on the internal workings of a battery. The author’s interest in the 

accuracy of the model is the loading effect on the battery voltage since a higher 

load results in a larger voltage drop across the internal resistance and as such 

will influence the final current value; a voltage drop requires a rise in current to 

achieve the same power output. Modelling of a battery depends very much on 

the data available, the accuracy needed and the type of battery. 

 

Figure 2.5:  Battery as a non-ideal voltage source 

 
Tremblay et al. (2007) presents a generic model for which parameters can be 

extracted from the manufacturers supplied power curve. This has the advantage 
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that the internals of the battery need not be known. The model estimates SoC 

as well as voltage and current. This model is readily available in Simulink as a 

battery component within the SPS toolbox and will be used during the 

simulations. 

The model used is chosen to mimic the behaviour of a battery and not the aging 

process or heat factors. It is assumed that during drive cycle test that aging has 

little influence. The heat factor is assumed constant by keeping charge / 

discharge cycles well within operating conditions. Any benefits or downsides in 

terms of aging and heat factors to a battery pack are related to the occurrence 

of excessive peaks as opposed to a low constant current draw and affect the 

efficiency of the battery.  

2.2.8. Summary 

The price of the Lithium-ion battery is still very high in comparison with lead 

acid. The trade-off between energy density and power density as a design 

requirement directly affects the range.  

There are two major causes that influence the battery lifetime and capacity: 

 Peak current demand 

 Ripple effects 

Both can result in increased heat which is directly related to a reduced available 

battery capacity and reduced life span.  By reducing the peak current demand 

and reducing current ripple battery life can be improved and efficiency 

increased which results in more available capacity, prolongs battery life span 

and increases range per cycle. 

One way to reduce the current as seen by the battery pack is to increase the 

number of cells in series but this increases complexity of the BMS which also 

could increase weight of the overall pack. 
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A battery under regenerative conditions is not functioning effectively due to the 

short periods of recovery which is also found in high frequent pulse demand – 

for example – start stop driving. It would make sense to incorporate these as 

design features in a new PEMS.  

2.3. Ultra Capacitor 

The name Ultra Capacitor (UC) is a trade name, as is super capacitor and 

Electrochemical Double-Layer Capacitor (EDLC), the later referring to its 

construction and method of storing energy (Sharma and Bhatti, 2010). In this 

thesis the name Ultra Capacitor will be used. The name Ultra Capacitor (UC) 

will be used in this thesis for all such devices. 

An UC stores energy in the form of static electricity on 2 opposing plates which 

are separated by an insulator (Ribeiro et al., 2001).  

The energy a Maxwell UC can store is described in (2.1) where E is the energy 

stored, C is the capacity and V is the voltage potential.  

   
 

 
    (2.1) 

The Maxwell UC can access the full range from zero to operating voltage 

(2.5V). However, it is not realistic to operate the UC in voltage range of zero to 

maximum cell voltage because in a conversion the current increases inversely 

proportionally with a voltage decrease. If the voltage drops the current 

increases in order to maintain the power balance. Another reason is instability 

of the converter at low input voltages (Giaouris et al., 2009). 

A minimum voltage is often set as the lower limit of operation to protect the 

system and to preserve efficiency of the system. While the internal resistance of 

a UC is generally low (in the region of milliohms) at high currents this will result 

in significant losses. 
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While the operating range of the Maxwell looks good it is actually a lot smaller 

because of system design limitations. These limitations result in an energy 

calculation as shown in (2.2), where      and      are the upper and lower 

system limits of the UC, respectively. 

   
 

 
            

  (2.2) 

A Lithium-ion UC uses a different technology akin to Lithium-ion batteries. The 

lithiated electrode (negative) holds a fixed lower potential compared to the 

activated-carbon electrode (positive), which allows for a higher voltage and 

since the voltage is squared to achieve energy (2.1) results in a higher energy 

density. The lithiated electrode also provides a larger surface area for storage 

and thus a higher capacitance per unit weight allowing the Lithium-ion UC to be 

designed at a lower weight for an overall increase in energy density despite 

voltage operating range limitations. In addition this UC also has a lower self 

discharge rate (Smith et al., 2013). The voltage range limitation is a result of the 

lithiated electrode losing li-ions when operated below the set range (Sivakkumar 

and Pandolfo, 2012). 

Example specifications of 2 different UC technologies are shown in Table 2.1. In 

this comparison conducted by (Lambert et al., 2010) the Lithium-ion capacitor 

shows an improvement of 2.7 times in weight and at a higher voltage an 

improved energy density compared to an off-the-shelf equivalent Maxwell 

PC2500  (Lambert et al., 2010).  

Assuming the full voltage is available then the Li-Ion UC shows an improvement 

of 3.4 times energy density compared to the Maxwell (see Table 2.1. However, 

as reported it is not always practical to use the full voltage range.  

The voltage level of an individual lithium-ion UC cell has a similar range as a 

lithium-ion battery but since the energy is stored as electricity there is no delay 
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in converting the energy to electricity as there is in a lithium-ion battery. 

However, as the electricity is stored as static charge on the available surface 

area inside the capacitor the amount is an order of magnitude smaller than the 

energy stored in a battery (Thounthong et al., 2009a).  

Table 2.1: Ultra Capacitor technology comparison 

 Maxwell PC2500 Lithium-Ion Capacitor 

Nominal Capacitance 2700F 2200F 

Usable Voltage Range1 0 – 2.5V 2.2 - 3.8V 

Maximum Current ± 625A ± 250A 

Cell Mass 711.8g 261.0g 

Dimensions 61 x 61 x 158 mm 10 x 125 x 180 mm 

Operating Temperature -40°C to +70°C -20°C to +70°C 

Energy (full range) 2.34 Wh 2.93 Wh 

Energy Density 3.29 Wh/kg 11.24 Wh/kg 

Adapted from Lambert et al., (2010) © 2010 IET 
 

This allows the UCs to have a high power rating, but at the expense of a low 

specific energy rating. Recall from Figure 2.1 the UC’s specific energy (how 

much energy a source can hold in Wh/kg) is an order of magnitude smaller 

compared to Li-Ion batteries. The UC’s specific power (how much power a unit 

can supply in W/kg) on the other hand is an order of magnitude larger in 

comparison with Li-Ion batteries. 

The high specific power rating allows the UCs to support a slower acting energy 

source by providing peak power assistance (Uzunoglu and Alam, 2006, 

Thounthong et al., 2009a). The support reduces the stresses on the slower 

source by reducing peak current demand and thus reducing temperature 

increase and increases life expectancy without limiting acceleration 

                                            
1
 This is not necessary a practical design voltage range.  
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performance of the electric vehicle, while potentially reducing the size of the 

overall energy pack (Takehara et al., 1996, Di Napoli et al., 1999, Jinrui et al., 

2006a, Jinrui et al., 2006b, Rosario, 2007).  

This supporting of battery packs or FC systems by peak current or power 

smoothing is generally accepted as a potential useful improvement to EVs and 

in particular support points 1 and 2 raised by Crolla et al. (2008).  

2.3.1. Temperature effects on Ultra Capacitors 

The working operating range of the UC is -45 °C to + 60 °C (Mallika and 

Saravana Kumar, 2011) which makes it a good supporting unit in cold climates 

or even cold days as a support for cold starting instead of burdening the lead-

acid battery with the high power current draw and seriously reducing the life 

span of the battery (Miller and Sartorelli, 2010). 

2.3.2. Charging the UC 

The UC behaves very different under short charging periods as a result of the 

way it stores energy; there is no conversion necessary from one form of energy 

to another. As a result unlike the Li-ion battery the UC has very good storage 

behaviour for time periods under 20 seconds. The UC can return the energy it 

has stored as a result of –for example – a regenerative event with higher than 

90% efficiency (Loukakou et al., 2010). 

2.3.3. UC cell management 

Much like the individual battery cells, the individual cells of an UC string suffer 

from manufacturing discrepancies and because of the much higher currents the 

lower internal resistance does not negate the challenge. A short string, as in the 

case with batteries, keeps the system simple and light.  
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2.3.4. UC model 

As in the case of a battery model there are various approaches that can be 

used. Smith et al. (2002) shows the accuracy of a first order RLC model, where 

the inductor (L) adjusts for frequency influences on the UC. But with the 

magnitude of the model nearly linear at higher frequencies this model can be 

simplified by reducing it to its RC equivalent. The choice of model for simulation 

depends on the available model parameters. Its basic circuit equivalent model 

(RC model) is presented in Figure 2.6. More extensive models are provided by 

Grbovic et al. (2011) and Xu and Riley (2011) but the benefits of these models 

in simulation are depending on the type of research. The latter providing the 

background for the Matlab model that can be found in SPS.  

 

Figure 2.6: UC equivalent circuit model 

 

In this thesis, a basic State of Charge (SOC) module (such as the Simulink 

model described earlier) is sufficient since the internal parameters of the UC are 

unknown to us. As in the battery model case, this UC model can be given the 

basic information (information that is available from data sheets) to get a 

accurate model of a super capacitor.  

Iuc 
Vuc 

Ri 

Vc 
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2.4. The UC module 

In this thesis the combination of UC and DC-DC converter is referred to as a UC 

module. The addition of an UC module to the drive train should be measured on 

four points in order to prove a benefit to the system:  

 

1) to improve vehicle acceleration; 

2) to improve overall drive efficiency, thereby increasing 

the driving range; 

3) to reduce life cycle cost by extending battery life; 

4) to reduce capital cost by direct replacement of some 

batteries.  

(Carter et al., 2012, p. 1526) 

The author does not consider this list complete. Vehicle acceleration does not 

necessarily need improving since a vehicle such as the Nissan LEAF has 

acceptable acceleration. In the author’s opinion it is more important that any 

improvement should not reduce the driveability of the vehicle while lessening 

the peak load demand on the battery. An additional point would be that the total 

weight of the solution should not be increased unless compensated by a gain in 

energy from the battery. UC modules can also be applied for use in ICE which 

result in different benefit aims (Lugert and Knorr, 2002). 

2.4.1. Summary 

The UC has the potential of delivering high power for short periods of time but 

its fast changing voltage level means it requires additional electronics to control 

and stabilise the voltage swing. Due to its low energy density, the energy to 

weight ratio is a lot less than a battery which implies that to be a good support 
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the benefits of the UC module has to outweigh the introduced weight and cost 

factors. There is likely an optimum solution between usability and weight. 

2.5. DC-DC Converter 

The basic functioning of the Direct Current to Direct Current (DC-DC) Converter 

is to convert an input voltage to a different level output voltage. This output can 

be lower, higher, both or negative depending on the circuit used. In this thesis, 

the Half H-Bridge converter will be used which is shown in Figure 2.7. DC-DC 

converters find a very wide area of implementation in today’s society (Lung-

Sheng and Tsorng-Juu, 2012). The circuit is well described in literature for 

example by (Caricchi et al., 1994, Rosario, 2007).  

 

Figure 2.7: Half H-bridge converter 

2.5.1. Introduction 

The main reason for using UCs is their ability to instantaneously supply large 

amounts of power; this ability protects slower sources against peak power 

demands in a variety of applications. The UC voltage is dependent on the 

current drawn or returned and so may fluctuate widely. The main benefit of 

using an UC setup and a bi-directional DC-DC converter is the ability to manage 

the SoC of the UC (Jayawickrama and Rajakaruna, 2004). This can then be 
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used to supplement the power demand with UC power instead of drawing all 

power from the battery.  

Introducing DC-DC converters into the drive train reduces low frequency ripple 

propagation - noise from the inverter - and improves recuperation of energy 

through multi-quadrant operation (Divan, 1989). The controllable bus voltage 

allows for control strategies to increase the efficiency of the controller and motor 

operation by keeping a high voltage at high motor speed when the back 

Electromagnetic Force is high and low voltage at low velocity (Estima and 

Marques Cardoso, 2012). As reported (2.2.2  Regenerative effects on the 

battery and 2.3.2 Charging the UC), both the battery and UC could facilitate 

recuperation of energy, which can be improved through converters but only UC 

has the efficiency to do this over short term periods (periods lasting less than 20 

seconds). 

A battery could also be fitted with a converter to achieve a higher voltage level 

but a battery pack has a more stable voltage level; it changes less quickly with 

charge removed compared to UC. The battery does have an operating range 

but the design of most inverters allows for a wide operating range. An example 

inverter such as the Curtis 1238-6501 AC Induction Motor Controller has a 

nominal input voltage range of 40-80 volt. If a single lithium cell has a nominal 

voltage of 3.2V, with max voltage of 4V and a minimum voltage of 2.5, one 

could string together 20 cells and be well within operating conditions at all times 

(64V nominal). 

DC-DC converters would allow the designer to use fewer batteries in series 

while still achieving a set target voltage. This would achieve a more stable bus 

voltage as the voltage swing as seen by the motor controller would be reduced. 
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A strong argument against using converters in combination with batteries would 

be the potential rise of current as seen by the battery as a result of the power 

balance: 

          (2.3) 

                   (2.4) 

If the output voltage and current are fixed and the input voltage is lower than the 

output voltage then the input current will need to increase to maintain the power 

balance. At an input voltage of half the output voltage the input current is double 

the output current. 

     
    

   
      

    

 
     

            (2.5) 

In real circuits this effect is even further increased because of component 

losses.  

The reduction of the string length through the use of converters would result in a 

higher current as seen by the battery under cruising conditions. To counter this 

effect multiple strings and multiple converters would be necessary. Any 

negative effects are most noticeable under high way cruising conditions when 

the driving demand is constant and at a high level. 

Multiple device converters including interleaved multiple device converters can 

help in reducing the size (but increasing the number) of the components. The 

reduction in component size combined with the doubling of frequency increases 

the efficiency by reducing the losses (Hegazy et al., 2012). 

Using multiple converters has 2 key advantages: 

 The weight of each inductor can be more than halved because the size 

of the inductor is in direct relation to the supported current and the 

surface area of the diameter of the wire, 
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 The output voltage ripple can be reduced (theoretically removed but this 

is not possible in practise) by creating interleaved converters (Giaouris et 

al., 2013). 

Various studies (Ortuzar, 2005, Rosario, 2007, Miller and Sartorelli, 2010, 

Khaligh and Zhihao, 2010) have been conducted to investigate the 

effectiveness of the addition of UCs and converters to the electric drive train 

and their benefit to the weight ratio of the pack and the cost effectiveness of the 

solution. The effectiveness of the UC module and converter configuration is 

partly due to the effectiveness of the converter itself, which in well designed 

converters can reach up to 97% efficiency for a 50kW converter (Pickert et al., 

2010).  

DC-DC converters are non-linear switching systems and their behaviour is 

characterized by various modes of instability because of moments of switching.  

Within converter operation there are two main modes that define the moment of 

switching: Continuous Conduction Mode (CCM) and Discontinuous Conduction 

Mode (DCM). In DCM the voltage across the inductor during the switching 

period falls below the forwarding voltage of the opposing diode (the diode not 

paralleled to the switching MOSFET). Because the diode is no longer forward 

biased the current through the inductor falls to zero instead of the continuous 

ripple in CCM (Erickson and Maksimovic, 2001). In this thesis only CCM is used 

for modelling, while the simulation incorporates both as part of the setup 

chosen.  

However in vehicles weight is a significant contribution to the overall efficiency 

of the tank-to-wheel energy conversion. Some weight factors are: 
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Cooling 

Converters can be found in different sizes and topologies. According to Pickert 

et al. (2010) one third of a converter’s weight is accounted for by a water cooled 

heat sink if used. Air cooled converters are possible but their power output is 

limited by the wire gauge used and the presence of an airflow.  

Inductor 

The inductor is the component which allows the step up or down of the voltage 

in a converter by temporarily storing energy. The size of the inductor is defined 

by the carrying current and the frequency used.  

The latter is described in (2.6), with L = inductor (H),    = input voltage (V), D = 

duty cycle, T = interval period (  
 

 
)   = frequency and    = allowed peak 

current ripple (Erickson and Maksimovic, 2001). 

   
  

    
   (2.6) 

The inductor calculation for a buck converter is given in (2.8) where  =output 

voltage (V). 

   
        

    
 (2.7) 

In high frequency switching power electronics there is the issue of switching 

spikes; voltage peaks that arise because there is parasitic inductance in the 

system. Part of this inductance in the system is defined as “the inductance of 

the commutation loop” (Caponet et al., 2000, p. 919) which include: the 

inductance from the bus bar, the capacitors, screw terminals and the switching 

module. The voltage drop across the inductor is described in (2.8) (Floyd, 

1997). 
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 (2.8) 

At a higher frequency the current rate of change increases. Enhanced by the 

added parasitic inductance this will result in a larger change in 
  

  
 and as such a 

higher voltage overshoot as well as higher losses due to switching (Giaouris et 

al., 2008). The effects of stray inductance become more apparent when the 

frequency is increased and an increase in power is demanded (Skibinski and 

Divan, 1993). A smaller current ripple will result in reduced voltage spikes as a 

result of parasitic inductance while reducing losses will improve efficiency and 

lead to the reducing the dimensions of converter components. 

Bus Capacitors 

The output capacitors in a converter setup are designed to smooth the output 

ripple. Switching converters have an inherent ripple as a result of their 

operation. The output capacitor provides a degree of smoothing. The equations 

are given in (2.9) and (2.10) (Erickson and Maksimovic, 2001). The equation for 

the boost converter is given by the (2.9) where   = output voltage (V),   is the 

load represented as a resistor (Ω),    = the desired voltage ripple.  

        
  

   
   (2.9) 

Similarly, the equation for the buck converter is provided in (2.10). 

       
    

   
 (2.10) 

The capacitor boost equation shows that the value for the bus capacitance 

depends on the load ripple (  ) and the desired voltage ripple (  ).  

The bus capacitance is often designed larger than calculated to avoid instability 

at the bus (Jamshidpour et al., 2011). In the same paper a control adjustment is 

presented to reduce the bus capacitor size by factor 2. This point is made by 
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(Payman et al., 2011). Another solution to reduce the capacitor size is to use a 

UC + converter as an adaptive active capacitor converter solution as presented 

by (Zhang et al., 2013b).  

2.5.2. The Converter model 

There are various types of converters as described in (Williams, 2013), for the 

research in this thesis a Half H-Bridge converter layout is used, shown in Figure 

2.7 (page 32), repeated in Figure 2.8 for convenience. This layout has been 

described as the best optimum for BEV (Schupbach and Balda, 2004, Amjadi 

and Williamson, 2010). In this thesis the converter is connected with a source 

lower in voltage than then the output voltage, which means the voltage is 

boosted from the source to the bus and bucked from the bus to the source. It is 

possible to implement the converter in reverse but this would require a larger 

string of cells to achieve voltage higher than bus voltage and as found by Miller 

and Sartorelli (2010) the power profile would be very similar and as a result the 

voltage level would define the current draw; a larger current for the boost option 

but as discussed the current draw is not an issue for the UC. The longer string – 

on the other hand - is considered a disadvantage due to issues with cell 

balancing, weight and cost, as mentioned in section 2.2.6 (Battery Management 

System). 

 

Figure 2.8: Half H-bridge buck boost converter  
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The component variables can be found from the equations shown in (2.6), (2.9) 

and (2.10). To establish the values for the Proportional Integral (PI) control loop 

a Simulink model is build based on the state space averaging method. The half 

H-Bridge converter can be approached as two individual converters: a boost 

converter as shown in Figure 2.9, where only switch S is toggled through a 

Pulse Width Modulated (PWM) signal or as a buck converter as shown in Figure 

2.10. The basic buck converter circuit is shown as per convention. It should be 

noted that in the bi-directional setup the input of the buck converter is the output 

of the boost converter.  

 

Figure 2.9: Basic boost converter Figure 2.10: Basic buck converter 

 

These ideal converters can be described using the state space equations, 

which are shown in Table 2.2 - 2.3. 

Table 2.2: Ideal Boost Converter 

S closed S open 

 
   
  

    (2.11) 

 
  

  
   

 

 
 (2.12) 

      (2.13) 
 

 
   
  

      (2.14) 

 
  

  
     

 

 
 (2.15) 

      (2.16) 
 

 

 



 

  
40 

 
  

Table 2.3: Ideal Buck Converter 

S closed S open 

 
   
  

      (2.17) 

 
  

  
     

 

 
 (2.18) 

      (2.19) 
 

 
   
  

   (2.20) 

 
  

  
    

 

 
 (2.21) 

     (2.22) 
 

  

2.5.3. Converter control 

There are two main modes of converter control which are named after their way 

of operation: Current Mode Control (CMC) and Voltage Mode Control (VMC). 

VMC converters are controlled through a basic voltage loop, which reads the 

voltage level at the output and compares this to a reference voltage followed by 

PI controller which generates the Pulse Width Modulated (PWM) signal to 

toggle the appropriate switch. The disadvantage of this approach is the control 

is slow. A slow control results in a slow response to changes in the load, which 

requires a larger output capacitor to compensate. CMC is faster and as such 

has a better feedback loop response compared to VMC.  

Boost converter topologies are often controlled using a current control strategy 

while a voltage loop is used in a slower control loop and is necessary if the load 

conditions are changing (Tse, 2004).  

Two commonly used current control modes are peak current control and 

average current control (Giaouris et al., 2009). Dixon (1998) states that peak 

current control has various negative drawbacks such as poor noise immunity, 

slope compensation needed and peak-to-average current errors. Under 

average current control Kp can be proportional only or proportional-integral but 
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in both cases its output value needs to be limited to avoid period doubling as a 

result of border collisions which cause instability (Tonicello, 2002). 

Giaouris et al. (2009) states that it is clear that average current control has other 

control and design issues of which setting the control parameters is the main 

one, which make it easier to implement peak current control. Peak current 

control has another big advantage and that is the speed of the control loop. The 

low frequency ripple propagation from an inverter drive can be reduced by using 

a fast current control loop when the DC-DC converter is designed separately 

from the inverter (Jih-Sheng, 2009). 

As shown in Figure 2.8 (page 38) the actual converter can easily be modelled in 

the Matlab / Simulink toolbox SimPowerSystems and the control system can 

then be designed in Simulink itself.  

2.5.4. Peak current control setup within Matlab / Simulink: 

The inductor current is measured and compared to a reference value. The error 

signal is then sent to a RS flip-flop which has its Set input connected to a clock 

signal, see Figure 2.11. Table 2.4 shows the truth table of the SR flip flop. At the 

start of every period the flip-flop is set (Q = 1) and thus boost switch is on. The 

output remains high until a reset value is presented at the Reset input. This 

happens when the inductor current is equal or higher than the reference current. 

Table 2.4: SR Flip-flop truth table 

S R Qn !Qn 

0 0 Qn-1 !Qn-1 

0 1 0 1 

1 0 1 0 

1 1 0 0 
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 Converter and stability 

The duty cycle of the PWM control signal is a direct relation to the input to 

output ratio of the half H-bridge converter. The duty cycle for the buck converter 

is given in (2.23) (Erickson and Maksimovic, 2001). 

 
    

   
   (2.23) 

While the duty cycle for the boost converter is given in equation (2.24). 

 
    

   
 

 

   
 (2.24) 

Peak current control looses stability at duty cycles over 0.5. This effect is 

countered by introducing a ramp with a slope equal and inversely proportional 

to the slope of the inductor current (Dixon, 1998, Erickson and Maksimovic, 

2001). In this control setup a ramp compensation of 0.5 of the inductor ripple 

current was chosen as shown in (2.25) where    is the inductor current ramp is 

during the off-period of the switch; i.e. when the current through the inductor 

falls. 

    
 

 
   (2.25) 

O'Loughlin (2012) notes that before the start of a period a blanking interval is 

needed to avoid the duty cycle being able to be on for the whole period 

(D=100%). Under boost conditions the duty ratio vout/vin goes to infinity under 

ideal conditions and still is excessively large under non-ideal conditions causing 

instability. This blanking interval was implemented with the use of a second 

timer and logic shown in the highlighted area of Figure 2.11; the derivation of 

the Karnaugh map for the logic used can be found in Appendix 3. 

This logic has two effects: a) it ensures that at the beginning of the period the 

flip-flop is always set (Q=1), while the last 10% of the period is always reset 

(Q=0).  
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Figure 2.11: Peak Current Control Mode 

 
Due to the internal resistance of both the battery and UC it is common to charge 

at low SoC with a constant current and switch to voltage control when the 

maximum charging voltage is reached and reduce the charging current to 

ensure no overcharging occurs which could damage the receiving source.  

To simplify the control setup the following assumptions are made: 

 The preferred method of converter control is through a peak current 

controller with an outer voltage control loop in order to maintain a stable 

bus voltage except when the bus voltage is defined by the battery.  

 When the battery defines the bus voltage the assumption is made that no 

damage is sustained by the battery under charging moments.   

To establish the controller parameters the transfer functions are required. These 

transfer functions are derived through state space modelling and fully described 

in Erickson and Maksimovic (2001).  

The state space equations are then setup in Simulink as shown in Figure 2.12 

(adapted from (Erickson and Maksimovic, 2001)) and then the control 

optimisation toolbox (Simulink) can be used to quickly derive the most optimum 

control settings. The optimisation toolbox requires the use of the transfer 

functions and cannot be directly applied to the implementation in Simulink / SPS 
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since the setup relies on switching which the optimisation protocol sees as 

either on or off for the duration of the optimisation strategy.  

 

Figure 2.12: Averaged model in Simulink boost converter 

The control loop under buck conditions is only a CMC loop to simplify the 

simulation. The reference current estimation is difficult under a changing bus 

demand or supply. Under buck conditions a torque reference is often used to 

calculate a power reference for energy recuperation (Dusmez and Khaligh, 

2013). In the simulations the bus demand is represented by a Current 

Controlled Source (see chapter on motor and controller) which means that a 

torque reference is not available in the simulation setup used. A reference from 

the current supplied into or out off the bus does not work in the case of charging 

an UC because the switch disconnects the bus from the output. A current 

reference only validates against the reference current for part of the period. As 

compensation the current sensor was placed just after the inductor such that 

under buck conditions the output current would be measured and slightly 

smoothed as a result of the output capacitor (Lynch, 2003). If the reference 

current is derived from the current supplied to the bus then during the on period 
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the current through the inductor rises until the measured current is equal to the 

reference current then the switch is opened but there is still a capacity added to 

the bus equal to the reference current multiplied by the duration of the off 

period. This is illustrated Figure 2.13 (page 46), where Vin is the bus voltage, 

Vbat is the output voltage as seen by the buck converter and current is the 

inductor current. Increasing the reference current would result in a less steep 

slope at the bus (Vin) but it would always rise. Inversely, increasing the 

reference value above a certain point would deplete the input capacitor because 

during the on period of the switch more current would be removed than supplied 

during the whole switching period. This behaviour is recognised especially in 

renewable energy sources where the source supply is not constant and as such 

robustly designed input filters are necessary which incidentally adds cost weight 

and volume to the design (Williams, 2013).  

In order to overcome this effect during our simulations the author assumed that 

the amount of power being recovered would not exceed the rated charge 

current of the battery or the UC. This is an appropriate assumption since the 

interest is in current ramp effects and (for the moment) not in the effects of 

emergency stop.  

A feed forward loop was developed based on the converter input impedance, 

the aim of this loop is to measure the bus voltage and combined with the 

averaged input impedance a current reference was created. The bus voltage 

was monitored and the reference current adjusted to maintain a stable bus 

voltage and as such protect the bus against over/under voltage conditions. The 

assumption made here was that the battery or UC would be able to handle the 

current provided under regenerative conditions and that the regenerative 

current would not exceed the converter maximum. The result is shown in Figure 
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2.15. The outcome of the test simulation is shown in Figure 2.14. The derivation 

of the transfer function is explained in Appendix 4.  

 

Figure 2.13: Simulation output fixed reference current 

 

Figure 2.14: Simulation output controlled reference current 
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Figure 2.15: establishing control parameters for buck converter 

2.5.5. Summary 

The main benefits of using a converter are that the system is able to access all 

the available energy from the UC whilst controlling current and current ripple. In 

addition a more stable bus voltage may be achieved. 

A disadvantage of using a converter with a battery is the increase in current 

demand as seen by the battery based on the power balance equation. 

2.6. Establishing the size of the support module 

The sizing of the UC module depends on 3 aspects that define the size, weight 

and cost: a) Peak power demand b) Useable energy and c) Converter ripple. In 

addition, adding the UC module should result in some kind of gain, for example: 

overall reduced weight, improved battery efficiency and thus improved driving 

range without affecting driveability, less batteries in a string and thus reduced 

overall cost or any combination of these features, otherwise the system is not 

viable. In other words, the addition is a trade-off between the UC module’s size, 

weight and cost, and the gains it brings. 

Peak power demand affects the size of the current carrying components of 

which the inductor forms a very large and heavy part. The peak demand also 

affects the size of the output capacitor, where a larger peak demand requires a 

larger capacitor to avoid under voltage (or over voltage) situations. The useable 

energy depends in part on the working range of the UC but also on the number 
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of UC strings in series and in parallel. If more energy is required the module will 

be heavier. The choice of PEMS influences the size of the UC module and as a 

consequence its weight (Mesbahi et al., 2014). 

The converter ripple consists of two components; the inductor current ripple and 

the output voltage ripple. The size of the allowable inductor current ripple 

defines the value of the inductance and with a higher inductance more windings 

are needed which results in a heavier inductor. The wire diameter and thus its 

weight are dependent on the current carrying capacity; i.e. the maximum 

allowed current (Miller et al., 2008). The size of the allowable voltage ripple as 

seen by the output defines the output capacitance with a higher capacitance 

resulting in a smaller ripple.  

For the current state of the art in converter design the following values can be 

used: 5 kW / kg (Miller, 2004) which is expected to rise to 14.1 kW / kg in 2020 

(Rosario, 2007). 

In FC systems the complementing energy source (which can be a battery or 

UC) is determined on the basis of current slope limitations (to avoid fuel 

starvation which can seriously damage the stack (Payman et al., 2011)). Hence, 

“Worst case scenarios from drive cycle determine size of the storage devices. - 

(Thounthong et al., 2009a, p. 250)”. The worst case scenario in this case is 

defined as the fastest allowable response from the system minus the fastest 

allowable response of the second source. This means that the supporting 

source needs to be able to complement 2 aspects: 1) being able to support the 

power requirements and 2) being able to support the energy requirements. As a 

reminder: The power requirements are dependent on the weight of the vehicle 

(and any associated friction and losses) and the manner in which it is being 

driven with a requirement for fast acceleration resulting in a higher peak 
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demand. The energy requirements are dependent on the amount of power the 

supplementing unit should provide and the duration this power is required for.  

In case of an UC system designed for elevators the system should be designed 

to deal with the instantaneous required maximum power for the period of 

acceleration under maximum load as a priority. This leads directly to the energy 

requirements (Rufer and Barrade, 2002). Similarly, for ride through systems, 

which are systems to overcome brown-outs, small interruptions in the energy 

supply, the UC module would need to be sized for maximum power 

requirements after which the energy requirements are determined by the 

duration the system should sustain this power (Grbovic et al., 2011). The next 

limitation could be either space or cost. A brown-out is typically a small 

interruption in the supply which lasts from milliseconds to several seconds. For 

larger interruptions batteries or even FCs might be more appropriate; although 

FCs suffer from a start up delay, which require an UC module to support 

(Maxwell Technologies Inc., 2007).  

UC Systems used as primary power sources require very different 

considerations. An UC system used as a mobile quick charge receiver, for 

instance, where the charge provided at one station allows a tram to reach the 

next station where it is charged again. Here the energy requirements define the 

size of the module while the charging power (   ) is limited by the charging time 

(   ) allowed (Rufer et al., 2003) and not by the drive cycle since the power 

under discharge (    ) would be spread out over a period of driving (    ) while 

the charging period is a lot shorter and thus the power demand is higher to 

achieve the same energy. 

                   (2.26) 
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A FC has a slow response to changes in load demand and can be damaged if 

demand is higher than capability of supply, which provides a time segment 

during which a supporting system or systems should be able to supply; this 

approach can be seen as bus regulation while the FC system gets up to speed 

(Thounthong et al., 2009b) and as such prevent rapid changes in demand as 

seen by the FC (Thounthong et al., 2006). This relation is shown in equation 

(2.4); with the split in time is indicated for the different power durations. 

                                             (2.27) 

In applications where an ICE is involved the sizing of the UC is suggested to 

encompass peak shaving and the estimation of the peak power is defined as 

the: “maximum power demand for system under the target drive cycle, (Yu et 

al., 2012, p. 1645)”  

This means that if a different drive cycle is chosen the power expenditure could 

be overrated or underrated. It assumes that that power from the individual 

sources is available at all times; an UC might not be fully charged, which would 

imply that the remaining power comes from the battery.  

In electric vehicle systems a major objective is to satisfy regenerative and 

acceleration specifications (Di Napoli et al., 2002b),  

 
An Ultra Capacitor tank must supply all the power required in 

excess of the batteries rated power, if its state of charge is greater 

than a specified minimum - (Di Napoli et al., 1999, p. 2) 

 

In this definition the changing voltage levels of the UC are taken in account as 

part of the power requirements. The remainder of the quote can be summarised 

as: 
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                                       (2.28) 

With     the required power,           = rated battery power,    = power from 

the UC. The UC module should be able to supply this power as long as the UC 

voltage (   ) is larger than a set minimum (       ) at the moment of the initial 

demand. The inclusion of the minimum statement is to protect the system since 

at lower SoC the battery’s voltage level is lower and thus the current is higher. If 

the demanded power doesn’t change the current needs to increase when the 

voltage drops.  

In order to protect the battery from high frequency drive patterns the current 

demand can be split into a high and low frequency parts (through the use of 

filters) with the UC module responding to the high frequency demand and the 

battery supporting the low frequency. Defining the size of the UC module can be 

done through empirical simulation tests (Blanes et al., 2013, Etxeberria et al., 

2012). The aim is to smooth battery peak demand while maintaining UC voltage 

between set minimum and maximum, see also (Rosario, 2007, Grbovic et al., 

2011). The use of filters generally includes introducing a delay in the system, 

which should be avoided if possible or negated by introducing that delay to the 

battery converter as well, which introduces delays in the system and a large 

drop in voltage at the bus which potentially causes instability. A popular design 

approach to sizing the UC pack is to look at the maximum acceleration time and 

required power in a drive cycle and then reverse engineer a pack size from this 

(Thounthong et al., 2009a). However, the maximum acceleration is variable 

from drive cycle to drive cycle and as such leads to over dimensioning of the 

UC pack to compensate for all eventualities.  

Ideally, an UC module should be designed to cover all the peak power above a 

certain mean value but there is no fixed mean value for a vehicle since every 
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vehicle is different and for every trip the driving conditions will be different. Then 

there is the different driving behaviour of people.  

Ortuzar (2005) proposed a strategy to add the energy needed for a 30 meter hill 

climb to the energy needed to accelerate to top speed from zero. This requires 

the converter to be designed for peak power up, over and above the battery 

power rating to be safe. Similar to the power demand increase when the 

acceleration is increased, an increase in gradient increases the power 

demanded. The problem with choosing a fixed value for a hill climb is the 

variability in hills. What happens if the hill climb is longer? Should the potential 

battery power be limited through a current restrained strategy? Limiting the 

battery power to a level below the power available when support is active 

reduces driveability. 

Another approach is for the UC module only to support the battery when rated 

peak power is exceeded (Jinrui et al., 2006a, Sadoun et al., 2012), which leads 

to not being able to follow certain power profiles when the UC is depleted. Their 

argument is that limiting the battery current prevents the loss of capacity but it 

will also affect driving behaviour and potentially the safety of the driver which 

does not support points 1.1 and 1.2 raised by Crolla et al. (2008). 

2.6.1. UC Module efficiency 

The UC module adds weight and complexity to the drive train and compared to 

their battery counterparts are still very expensive for little energy. Under cruising 

conditions in battery powered electric vehicles an UC module is a weight that 

needs to be carried around, which in vehicles increases losses.  

The UC module should also be designed for highest overall efficiency with the 

efficiency defined by losses in the UC and losses in the converter. The UC 

module should not function below 90% efficiency (Miller and Sartorelli, 2010, 
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Miller, 2007a). The current at which this limitation occurs can be calculated 

through the combination of UC efficiency: 

 
    

 

  
   

    

 
(2.29) 

Together with the efficiency of the power electronics:  

 
      

 

  
           

     

 
(2.30) 

For a final efficiency of:  

                  (2.31) 

A Matlab program was written, see Appendix 1, - the UC cell used for this 

example is the Lithium-Ion capacitor cell - the output which is shown in Figure 

2.16 is based on a UC open circuit voltage of 3.6 and an internal resistance of 

1.4mΩ (Miller, 2007a, Miller and Everett, 2004).  

 

Figure 2.16: UC Cell Power versus Efficiency graph 
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The marker shows an UC operating point of 90% efficiency. In order to keep the 

efficiency above 90% the current from the UC should be limited to 
   

   
      

per cell. 

The efficiency of the converter is depended on the switching duty cycle. The 

calculation of efficiency can be a complex calculation (Hegazy et al., 2012), but 

are often simplified to the following individual equations (for both boost and 

buck converter) (Miller and Sartorelli, 2010):  

                                          (2.32) 

A Matlab program is provided in Appendix 2 and a sample plot is shown in 

Figure 2.17. 

 

Figure 2.17: Boost Converter Efficiency plot 
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2.6.2. Driveability 

Eco Driving is where the driving behaviour is modified through training to 

improve fuel economy and tail pipe emissions by “applying a smooth and 

progressive driving style” (Scott et al., 2012).  

Eco-driving features actions such as: 

 Moderately accelerating 

 Anticipation of traffic flow and signals 

 Not exceeding the speed limits 

 Regular maintenance 

It is recognised that eco-driving – if followed by the masses – will positively 

contribute to the reduction of Greenhouse Gasses as well as providing a safer 

driving environment and reduced cost for the individual driver (Barkenbus, 

2010). The specific style of driving would be of particular interest to batteries 

since it will smooth part of the acceleration.  

The way in which a vehicle is driven is also dependent on the age of the driver 

and is related to the drivers experience and cognitive ability (Knowles et al., 

2012b).  

A key aspect of vehicle behaviour is driveability, which is defined as: 

 
...the difference between the vehicle response to the 

driver request and that expected from the driver - (Eller 

et al., 2010, p. 2251) 

 

The definition of drivability is understood to be the response of a vehicle based 

on acceleration, braking and general driving behaviour (Crolla et al., 2008). 
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2.6.3. Summary 

In (Kok et al., 2013b) the authors highlighted the affects of smoothing the 

battery current under complete drive cycle conditions by using an UC with 

converter module. They also highlighted the relation between drive cycle and 

the use of the UC pack: under cruising conditions the UC module is hardly used 

since there are no changes to the speed and thus the UC module is effectively 

dead weight and could result in a loss in driving range. As such it would make 

sense to design the module to be as small as possible and use the battery’s 

energy and power to complement the UC module.  

The UC module should thus be designed to achieve the following: 

 Protect the battery from high frequency peak power demand changes 

 Support the battery under acceleration and deceleration as long as this 

happens above a certain frequency  

 Reduce the bus capacitance without sacrificing stability 

This would result in an UC module design, which  

 has the shortest set of UC in series (simplicity in BMS but lower voltage),  

 has the least strings in parallel (but sufficient capacity), 

 optimised power demand, 

 with the lowest efficiency losses; because no large current draw would 

be required even at low SOC as such all components (including the bus 

capacitor), 

 can be designed for minimum size and weight, smallest footprint under 

cruising conditions, 

 does not sacrifice driveability.  
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2.7. Inverter and Induction motor 

Induction motors are well described in literature (Krause and Thomas, 1965, Shi 

et al., 1999, Husain, 2003, Ehsani et al., 2004) as are inverters (Trzynadlowski, 

2001, Synthesis Partners LLC, 2011). The purpose of this chapter is to provide 

an overview but since these items are not used in this thesis they are only 

included for completeness and to explain the model chosen. The main 

advantage of the induction motor over a permanent magnet motor is that an 

induction motor requires no rare earth metals to make, because the magnetic 

field is induced through current flow, however it has control problems at low 

speed due to the resistance of the inductors. 

2.7.1. Induction motor 

The popularity of the induction motor has been rising over the last couple of 

years with low maintenance being a major feature compared to –for example- 

commutation motors (Finch and Giaouris, 2008). 

In principle the induction motor consists of two Y-connected or Delta-connected 

circuits a stator and a rotor. The stator layout is such that 3 coils are connected 

in a Y-formation and each branch is provided with 1 phase of an AC voltage 

source with the phases supplied at a phase shift of 120 degrees. 

The principle of operation is based on mutual induction; when there is a current 

through the stator a magnetic field will be induced through the air gap into the 

rotor which results in an induced current on the rotor side which creates a 

magnetic field which in turn aims to align with the field generated in the stator, 

which results in the rotor turning. The rotor will rotate along with the frequency 

of the supplied electrical signal adjusted by the number of pole pairs.  

The synchronous frequency is the frequency at which magnetomotive force 

rotates through the airgap. As a result of this force there the rotor is pulled along 
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and starts rotating with its rotor frequency which is very close to the speed at 

the air gap but with a slight delay (slip).  

2.7.2. Induction motor as a Generator 

An induction motor works by exciting the inductors in the stator which create a 

magnetic field which is the start of current induction and as such the creation of 

force. But the rotor is effectively a ladder with rods that does not have any 

excitation in them on their own. Turning the rotor without any other form of 

excitation does not generate current in the stator (because of a lack of magnetic 

field). If we would want to use the motor as a generator we are missing an 

essential component.  

The stator contains a little flux from it being magnetised (as an effect of it 

constantly magnetized as part of its operations. This residual magnetism and 

resulting flux does react to the rotation of the rotor and applying some 

capacitors in a line to line configuration allows the build up of a voltage as a 

consequence of this reaction. With the voltage established on the stator a 

current will flow in the rotor and thus a force will be generated.  

2.7.3. Induction Motor Control 

Vector Control (VC) is also known as Field Oriented Control (FOC) is the control 

technique of choice for asynchronous induction motors because of the 

possibility to access parameters such as rotor currents by deductions of the 

vector control principles which allows for control techniques that do not require 

sensors (i.e. sensorless control methods), which inherently reduce maintenance 

and cost (Finch and Giaouris, 2008). These control techniques offer a very fast 

response to a change at the input which makes them ideal for electric vehicles.  
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The basic aim of VC is to imitate the rotating commutator of brushed motors as 

if the system is a DC motor and as such we can keep the magnetic field 

constant and perpendicular so the torque can be maintained at maximum level 

(Husain, 2003, Ehsani et al., 2004). The other aim of VC is the independent 

control of the current and field flux for speed control (Trzynadlowski, 2001).  

2.7.4. The motor and Controller model 

A bus connection feeding a motor controller with induction motor can be seen 

as a black box, where the current is either demanded (accelerating / cruising) or 

provided (braking / regenerative). As long as the bus voltage remains within 

operating parameters from a Current Controlled Source (CCS) can be a good 

stand in for the complex setup that is the motor and controller since they do not 

play a part – in terms of their control – in the development of the power and 

energy management strategy. The basic model is shown in Figure 2.18.  

 

Figure 2.18: CCS model 

 
The choice for this model was based on the number of switching components. If 

the choice was made to simulate the inverter and motor controller including the 

switching components the simulation time would increase significantly. 

Increasing the number of converters from one to two would increase the 

simulation time from an average of 2 hours to an average of 6 hours for the 
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NEDC. In addition, it was felt to be not necessary as they can be adequately 

approximated by a current controlled source.  

2.7.5. Summary 

The motor and controller described here are used as basic reference material to 

determine the bus voltage, operating voltage range and current limitation. While 

this thesis focuses on the optimisation in power and energy management and 

control of the battery with UC combination, the effects this control can have on 

the bus connected peripherals can be substantial. In Synthesis Partners LLC 

(2011) a list of identified features has been produced which shown expected 

cost drivers according to inverter manufacturers. This list includes: capacitors 

and thermal management, which both are a result of wide operating range and 

ripple effects. In the same document some manufacturers stated their belief that 

today’s version of inverters are over-designed because of the unknown usage in 

operating range; i.e. more knowledge or tighter bus control would allow for a 

reduction in inverter cost and weight. The efficiency would also increase  (Siang 

Fui and Chee Wei, 2012). 

2.8. Topology Comparison 

Having established that combining batteries with UC and or converters can 

bring significant benefits, in this chapter some different topologies and their 

benefits and deficits will be examined.  

The different available energy and power sources available allow for different 

layout combinations of these component groups. The addition of converters 

allows for an even larger combination of these topologies and they are 

extensively studied and have their individual advantages and disadvantages. An 

extensive overview is shown in (Kok et al., 2013a).  
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This chapter provides an overview of the specific qualities that have been 

identified and which are specifically relevant in vehicles to improve driveability 

and user confidence. 

In a basic BEV drive train, the string is a reference to the number of cells in 

series used for a particular setup. The string length for all electric vehicles is 

defined by the desired nominal operation voltage and the type of cell used. For 

example, the battery pack in the Nissan leaf consists of a total of 48 modules 

divided over two strings. Each string consists of 24 modules and each module 

consists of 4 cells, which means that each string consists of 96 cells. This 

provides a bus voltage of around 365V (U.S. Department of Energy, 2012, 

Blanco, 2010). Tesla Motors use a different setup due to the use of a different 

battery design. They use a 16 modules in series with each module contains 6 

cells in series and 74 in parallel which means a total of 96 cells in series for a 

bus voltage of around 345V (Anderman, 2014). A discussion of all different 

possible configurations is outside the scope of this thesis.   

In the conducted review this was seen as a long string and a disadvantage of 

this length was the need for cell balancing, which means that the total pack size 

would be heavy and the balancing process complex. A benefit of this setup, 

using two strings, is a partial smoothing effect compared to a single string; each 

string only carries half the demanded current.  

Adding a string of UC directly in parallel to the basic drive train setup of 

batteries provides some smoothing but also requires a long set of UC cells as 

well as significant balancing at each cell (Miller, 2004). The benefits of this 

direct parallel topology is a proven reduction in transients during steps changes 

and runtime extension of the batteries (Smith et al., 2002, Uzunoglu and Alam, 

2006). A disadvantage of this direct parallel setup is that not all of the potential 
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energy of the UC is available because the UC functions as a filter capacitor and 

smoothes only the ripple effects; i.e. the UC is recharged by the battery once 

the battery has overcome its inertia. 

Figure 2.19 shows a popular topology; the so-called: cascaded topology 

(Mestre and Astier, 1997, Di Napoli et al., 1999, Di Napoli et al., 2001, Onar and 

Khaligh, 2008, Jian and Emadi, 2009). The first source can consist of a very 

short string with the second source a longer string (provided there are equal 

voltage levels per cell) while still shorter than the potential string length when 

directly connected to the bus. It is reported that if the first source is a battery 

and the second a UC then the UC can provide current smoothing for the battery 

and the battery does not see the any power demand under acceleration while 

under deceleration any recovery can be directed to the UC.  

Kok et al. (2013b) shows that a limited amount of smoothing is possible but over 

long periods of acceleration and cruising condition, the UC will not be able to 

supply the necessary energy and as such the current demand as seen by the 

battery can rise and because of the two converters the current will rise inversely 

to the voltage, which results in increased losses and may damage the battery. 

This topology would not be suitable for BEV where limiting current draw is a 

necessity to achieve maximum energy draw from the battery pack. Cell 

balancing over a long string of cells makes monitoring and management 

potentially expensive and complex. A similar conclusion was reached by (Miller 

and Sartorelli, 2010), where a cascaded setup with a battery as lowest point 

was seen as not the most beneficial.  

When the first source is an UC and the second source a battery (Figure 2.20) 

then the load current can be split between the battery and UC. The battery in 

this case can be protected from peak by the UC. Figure 2.20 is also referred to 
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as parallel since the battery is parallel to the UC module but the inverter here 

can also be preceded / replaced by a DC-DC converter as is shown here. 

 

 

Figure 2.19: Cascaded Connection 

 

Figure 2.20: Battery + UC module Cascaded 

Hence in this thesis this topology and others that use this approach are referred 

to as cascaded topologies. The described advantages are: bi-directionality, a 

constant voltage at the inverter and control over the state of charge of the 

capacitor (Mestre and Astier, 1997). This circuit overcomes the problem of the 

capacitor voltage needing to be as high as the battery voltage because of the 

DC-DC converter and at peak times the UC module can support the battery.  

The voltage at the inverter is dependent upon the battery voltage (Di Napoli et 

al., 1999) if no converter is placed between battery and bus. An expansion is to 

insert a DC-DC converter before the inverter (Jang et al., 2012, Di Napoli et al., 

2001). This has the benefit that the voltage can be boosted further before the 

inverter is reached and it provides smoothing against inverter ripple. The 

response from a DC-DC converter is fast enough to respond to changes from 

the inverter. This would increase the current draw as seen at the input of the 

converter but the peak current can still be supplied by the capacitor converter 

setup. Under cruising conditions this support will fade when the UC module is 

being depleted. 

An expansion on the cascaded topology can be achieved by using a battery 

with converter to act as support for a FC system (Jang et al., 2012, Payman et 

al., 2011). This topology and its control system reduce stresses in the FC 

because peak demand is reduced and increase the lifespan by maintaining the 
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FC at a fixed output voltage. Current is supplied from the battery when a 

change in current demand occurs. Allowing the FC to run longer when the 

current demand falls will charge the battery and extend the time period the FC 

can run at high efficiency. If an acceleration moment follows shortly after 

braking the FC is already providing its available power. The battery also 

recoups energy under regenerative braking.  

Figure 2.21 shows a parallel converter topology. The advantage of parallel 

connected power legs is the cumulative current at the same voltage to increase 

the total available power (Di Napoli et al., 2002a). It is possible to independently 

control the current demand from various sources. The response from a FC to 

changes on the bus is generally slow whereas the response from battery or UC 

is much faster. Using this topology the faster sources can support the slower 

sources while being independently controlled. 

 

Figure 2.21: Bi-directional Converter topology 

 

This design features various advantages over previously mentioned topologies 

(Rosario, 2007):  

 Relatively low voltage needed from the energy sources compared to 

direct bus connection 

 Modularity - The modular approach of the converter allows for 

standardised components which can be mass produced to improve 
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economies of scale offering cheaper components for use in these 

converters 

 Full control over SoC of both the battery and capacitor 

Some of the disadvantages reported: 

 A relatively large series setup of capacitors needed compared to 

cascaded connection 

 A higher current demand at the battery side as consequence of the 

reduced voltage 

 UC capacity to be defined for a wide variety of peak power profiles  

This parallel topology offers an advantage to FC systems because of the 

reduced ripple effects and peak power smoothing option (Jian and Emadi, 2009, 

Wuhua et al., 2010).  

Another feature that parallel topologies provide and that can be beneficial for 

the driver experience in BEV is redundancy (Camara et al., 2008). The 

reasoning here is that paralleling sources and paralleling converters reduce the 

risk of unbalancing the sources and provides redundancy on string level and 

converter level. Here redundancy takes precedence over number of 

components. 

Using switches at cell level Taesic et al. (2012) created a very flexible and 

redundant topology. Using the switches any desired topology can be created 

and if there is a unit failure this can be bypassed. This flexibility is a great 

advantage especially as it allows for redundancy but the number of components 

needed and their power rating makes this an expensive and potentially heavy 

solution 

Another approach is too aim for reduced losses at the expense of redundancy 

by providing peak power smoothing and reducing the number of components. 
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The argument being that efficiency is of vital importance because fewer losses 

mean more power from a third source (Marchesoni and Vacca, 2007).  

Multiple inputs can be connected to a single output through a traditional buck-

boost converter a so called: single inductor multiple input converter. This 

topology allows for reduction in parts. The control scheme allows smoothing of 

the current by allowing duty cycles (to open the switches) to overlap from 

different sources (Dobbs and Chapman, 2003, Ahmadi et al., 2013). Further 

improvements using four quadrant converters allows for recuperation of energy 

within the same topology instead of needing a separate converter (Khaligh, 

2008, Zhihao et al., 2009, Khaligh et al., 2009). The use of a single inductor 

compared to a multi-leg setup helps to reduce component cost and weight 

(Khaligh, 2008).  

These single inductor circuits have the disadvantage that there is no 

redundancy after inductor or converter failure. The use of a single inductor for 

all currents requires the inductor to be rated for peak load demand. The inductor 

is only optimised for peak demand from the load and not peak ability from its 

individual source. 

Song and Wang (2013) concludes that making a setup fault tolerant will 

increase the complexity and component count which can also impair the 

efficiency of the system. Therefore, if designing a fault tolerant system high 

efficiency at each stage is a necessity. 

A common feature of all topologies using DC-DC converters is the reduction of 

low frequency ripple propagation although this is replaced by higher frequency 

ripple from the converter. This higher frequency mainly causes generation of 

heat since its effect is inductive and not resistive but this generation of heat is 

relatively small in comparison with the heat generated by the DC current draw. 
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The measurement of component reduction is difficult since it always needs to 

be compared against a specific topology. The measure of component reduction 

is better measured with the aim of overall cost reduction. It should be noted that 

costs may be reduced by using more cheaper/smaller components rather than a 

single component which is specifically designed and as a result more 

expensive. This improvement often requires additional control hardware and 

creates additional manufacturing costs associated with controlling, handling and 

building these extra components into systems. It should be noted that higher 

manufacturing volumes may reduce costs through orders of magnitude 

offsetting some of these cost increases (Kok et al., 2013a). Component 

reduction is seen as desirable however reducing components could result in 

reduced flexibility and redundancy, both of which are also desirable design 

features. 

2.8.1. Summary 

Adding converters to energy sources reduces the length of the string which has 

benefits in BMS complexity but increased the current draw. The control of the 

peak current demand from sources sensitive to this becomes important. The 

modular setup allows for increased redundancy. The use of converters in 

combination with UCs is highly recommended due to the increased voltage 

range which leads to an increase in available energy. 

In Kok et al. (2013a), a novel approach to the topology setup was proposed 

based on the following design features:  

 Cascaded topology 

 Short UC string 

 Redundancy 

 Modularity 
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The design is shown in Figure 2.22. The author concludes that a parallel 

topology with multiple legs will reduce the current at each step. Support from 

the UC module reduces the current demand under acceleration conditions and 

cascading them limits the length of the strings. Under cruising conditions a 

reduced number of converters is active (i.e. only as many needed to achieve 

the desired demand) thus optimising efficiency by operating the converters at 

their most optimum point, while through the diodes the sources work together to 

reduce the current draw per source thus allowing the batteries to operate at low 

current demand reducing rate capacity effect and increasing range. The diodes 

also work together to balance the UCs and provide a parallel operation in case 

acceleration occurs which does not require maximum power but maximum 

energy.  

In a comparison between battery drive train without converter and a battery 

drive train with converter, the current draw from the battery as a result of the 

converter use is higher as a result of the power balance equation (see equation 

(2.3) page 34), which is why the multiple legs are required.  

 

Figure 2.22: Novel Topology 
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The use of the cascaded structure would result in a ripple as seen by the 

battery which would be a function of the UC contribution, which will be 

explained in section 3.2.3 (page 84). This topology is not investigated further in 

this thesis because the ripple experienced by the battery – especially the high 

frequency component - would result in direct effect of battery aging. This would 

result in direct capacity loss and thus be a direct contradiction to the goal that is 

to be achieved; improvement of efficiency. The addition of the diodes will result 

in random current injections which add to the ripple problem.  

2.9. Effectiveness of hybridization 

The addition of a UC module should provide a benefit in some form to the 

vehicle such as –for example - overall reduced weight, improved driving range 

or reduced overall cost.  Several case studies and research studies discuss and 

find whether there is a benefit that is worth for deployment in future vehicles ((Di 

Napoli et al., 2001, Ortuzar, 2005, Miller, 2008, Bo et al., 2009, Sadoun et al., 

2012). Some findings are discussed here. For example, a 45kW converter 

design described in Ortuzar (2005) has a reported 22kg inductor and a water 

cooling system. In the same paper the UC pack of 20.45F has a weight of 95 kg 

adding to this the converter components for a total combined weight of 135 kg  

as reported in Dixon and Ortuzar (2002). This means the actual converter 

weight is 40 kg resulting in 1.125 kW / kg. This figure does not agree with the 

estimated 5 kW / kg (Rosario, 2007). The combined vehicle weight is reported 

to be 2 000 kg (Ortuzar, 2005). This equates to 6.75% of total vehicle weight. 

This increases the power demand under acceleration and will affect peak power 

demand from the battery. 

The research concluded that if the life expectancy of the lead-acid batteries 

would be increased as result of the module addition to 50% it would make 
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financial sense over the life span of the vehicle, but it was recognised by the 

author that 50% would not be realistic.  

Yet, using batteries in plug-in hybrid electric vehicles (PHEV) can reduce fuel 

consumption by up to 70% and with a marginal increased cost to the overall 

vehicle ($3500) the reduction in fuel cost - $8.33 / 100 miles for a conventional 

vehicles versus $2.26 / 100 miles for a full electric vehicle2. A breakeven point 

in terms of cost would be achieved after approximately 57 000 miles, which 

means hybridization has merit (IEEE Board of Directors, 2007) but at an 

average annual mileage in the UK of around 12 000 miles per year (Average 

Annual Car Miles UK, 2014), the payback would be just under 5 years (just over 

4 if an annual mileage of 15 000 miles is assumed). 

Under cycling condition using a constant current and a constant time period J.R. 

Miller (2007) showed that UCs have a higher round trip efficiency during 

regenerative period of under 10 seconds (>90%), while lithium-ion batteries only 

achieve this efficiency at around 30 seconds. The round trip efficiency of 

lithium-ion batteries at 10 seconds is close to 50%. In (Mallika and Saravana 

Kumar, 2011) this effect was mentioned as having a breakeven point of 10 

seconds but the graph they used to arrive at their conclusion was taken from 

Miller (2007a) who used that particular graph as “illustrative only”. 

Baisden and Emadi (2004) proved through simulation a 70% reduction in lead-

acid battery pack size when using ultra capacitors in a HEV for a 2.41% 

improvement in MPG but at the expense of a heavier system which affects 

grade ability and top speed.  

Burnett and Borle (2005) prove in their paper the possibility of optimising a FC 

system using solar, Li-ion battery and UC. They show a cost and weight 

                                            
2
 Electric vehicle figures based on a Tesla 2007. The value derived for a Nissan Leaf will 

arguably look better since it has a smaller battery pack, smaller motor and overall less weight, 
which means the electric efficiency (kWh/mi) will be better and thus higher savings. 
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improvement by reducing the size of the FC to be able to supply cruising speed 

on its own, while power is supplemented from the battery and UC. Through the 

use of the UC the battery pack size is kept small by reducing initial peaks.  

2.9.1. Summary 

The use of converters does add to the effect of increased losses, but overall 

battery and ultra or super capacitor combinations have been proven to reduce 

the battery pack size while increasing the efficiency (more miles while using a 

smaller battery pack) but not reducing the overall weight volume, cost of the 

combined drive train (Miller et al., 2008).  

Ortuzar (2005) states that no improvement in range was found and stipulated a 

theoretical improvement of 50% in battery life span was needed (lead-acid) but 

the UC module used was of significant weight (about 200 kg on a 2000kg 

vehicle).  

Lithium-ion batteries generally have a much higher power rating, but their price 

is much higher which could make for a good cost argument. Their power rating 

is higher as well.  

While it seems certainly true that the peak power can be supplemented by using 

an UC module the benefits are not always an optimum solution. Most often the 

weight of the added systems seems to increase despite the reduction in the 

number battery cells. The crux of the problem is the need for batteries under 

cruising conditions where the low energy UC module is just added weight.  

2.10. Power and Energy Management 

The aim of Power and Energy Management (PEM) control policies is to 

increase energy efficiency and lifespan of the energy sources and is considered 

to be of extreme importance for the acceptance of EV (Steinmauer and del Re, 
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2001, Rosario and Luk, 2006, Jinrui et al., 2006a). In addition to the technical 

and practical reasons there are economical advantages to optimising the drive 

train such as reducing the energy components and cost reduction of the total 

drive train (Di Napoli et al., 2001).  

For hybrid electric vehicles there are 3 levels of control required (Rosario and 

Luk, 2007, Trovão et al., 2013).  

I. Operational (Power electronics – microseconds) 

II. Tactical (Power Management – Milliseconds) 

III. Strategic (Energy management - Seconds) 

Where operational is the switching control of the converter. This occurs at a set 

switching frequency which can be faster than microsecond intervals. Tactical is 

the power split between different sources, it defines which source supplies how 

much power at any given time and sets limits to how much power can be 

supplied by each source. Strategic is the overall management strategy to 

ensure that the limitations of each source are not violated. This level of control 

monitors the available energy in the different sources over time and decides on 

the best available strategy for the distribution of this energy. It informs the 

tactical management level on available power split options.  

2.10.1. Operational 

The operation of a converter is already discussed in an earlier chapter. In 

addition, within the control strategy for individual converters some accepted 

controls for Pulse Width Modulate (PWM) converters are current mode control 

(peak, averaged, charged) all three schemes can be supplemented with a 

voltage control loop (Cho et al., 2009) and voltage mode control. The main 

choice for a scheme is speed and stability under changing loads. A faster 
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controlled converter can control the output voltage better which results in 

smaller bus capacitance and it allows for better protection of slower sources.  

2.10.2. Tactical 

The power management strategy often boils down to the following equation: 

                  (2.33) 

Where n is the number of available sources and P is the power contribution of 

each individual source, which results in the total requested power (Pt).  

In HEV the power split is often designed to maintain a certain range of SoC of 

the battery with the ICE running in an optimised zone only; i.e. outside this zone 

the ICE will be switched off or other changes are made to bring the ICE back in 

optimum operation zone. The UC will support the battery at moments of peak 

demand, this often results in different modes of operation with each mode 

having a different set of operating parameters (Stienecker et al., 2005).  

The mode of operation is often used to identify a basic approach to the way in 

which the total power should be distributed, for example in a hybrid DC, source 

control is based around a rectifier and UC module to maintain a stable bus 

voltage but care must be taken to avoid chatter when switching between modes 

(Ayad et al., 2007). These are phenomena that occur when switching from 

mode to mode and happen when the control point occurs in border situations 

such as switching from acceleration to regenerative. These can be avoided 

using hysteresis or continuous and differentiable functions. 

Another reason for this approach is the realisation that when the UC module 

has been discharged it requires charging again, which can be done either 

through regenerative braking or from the battery. Regenerative braking has not 

got the potential to charge the UC back to full because of losses in the system. 

With these limitations it is generally agreed that around 30-50% of available 



 

  
74 

 
  

kinetic energy can be recovered. The battery will have to provide the missing 

charge. Charging an UC requires time and can be optimised if the required 

acceleration is known in advance (Trovao et al., 2010). Since most driving 

patterns are to a certain extend unique (either because of route, traffic or other 

factors), the UC module needs to be ready to be able to supply a certain value 

at any given time with the probability that at lower speeds an acceleration event 

is more likely than a regenerative event while at higher speeds it is more likely 

for a regenerative event to occur. Similarly, it is also not likely that an 

acceleration event always constitutes from 0-70MPH. 

The conclusion is that the converter does not need to be designed to supply up 

to maximum acceleration, while the UC does not need to be designed to have 

the energy to cover a full acceleration profile. While, this data looks good in test 

and a person might want this opportunity in case he/she needs to accelerate out 

of a situation the probability of any occurrences of these events is low.  

In Payman et al. (2011) the suggested control strategy directly incorporated the 

energy management strategy with the FC being able to supply all the power but 

under changing conditions the FC is supported by a UC module which only 

controls the current slope of the FC. The FC is allowed to rise as quickly as it 

can while anything faster the UC module supports. The flatness based control 

used allows for a certain minimisation of the bus capacitance because the 

flatness based technique allows for the definition of the combined reaction 

speed of the different sources.  

The inclusion of the energy management strategy directly in the control strategy 

has a disadvantage in that the FC output is directly related to changes at the 

output, which apart from the fast changes that are filtered by the UC module, 

still shows a changing load, while a FC prefers a more stable condition and has 
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an optimum working range. The approach does allow for the removal of 

operating modes and thus avoid chatter phenomena.  

2.10.3. Strategic 

A major problem in optimisation strategies is the difficulty in implementing the 

optimum energy strategy. The optimisation strategy involves the optimisation of 

a cost function such as optimised fuel consumption, reduced peak demands, 

reducing weight without sacrificing other features such as driveability 

(acceleration and deceleration response) and safety. The number of variables 

can be large which increases complexity of the equations. The best optimisation 

strategies can only be calculated offline and often rely on a-priory knowledge of 

the proposed drive aspects and require large databases of look up tables which 

requires seconds or even minutes to look through (stochastic optimal control, 

dynamic programming (DP)) (Hofman et al., 2007, Malikopoulos, 2014).  

Model Predictive Control (MPC) aims to overcome the problems of DP by tuning 

the system offline and applying it online (Hredzak et al., 2014). The tuning 

requires a lot of in depth knowledge and does not allow for easy adjustments. 

Predictive control as demonstrated by (Bender et al., 2013) show that while the 

possibility for optimisation is significant it requires a lot of storage space and 

computational energy and a baseline strategy is still needed in case a route has 

not been driven before.  

Drive Cycle prediction based on past events while seemingly very suitable for 

recurring routes, fails to deal with traffic effects and weather influences (Bender 

et al., 2013).  

Energy management strategies based on predictive control are potentially 

complicated to understand and modify and often slow due to number of 
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computations that are needed (Byeon et al., 2013). It is therefore important that 

energy management strategies also focus on the sub-optimal strategies. 

Equivalent Consumption Minimisation Strategy (ECMS) which aims to simplify 

the control problem by applying optimal combination of variables and is rated in 

optimisation capability close to MPC (Malikopoulos, 2014). However, it does not 

look at driving behaviour or tries to predict influences from outside (Borhan et 

al., 2012) 

Heuristic control strategies – Rule Based (RB) strategies. The strategy does not 

actively search for the most optimised solution but assumes a solution based on 

the limitations set (Pisu and Rizzoni, 2007). The limitations are fixed points in 

the operation which results in susceptibility to noise. The addition of fuzzy logic 

allows for smoother transitions between operation points which improves 

continuity and robustness but at the expense of increase computation 

requirements and data storage (Gurkaynak et al., 2009). Rule-based Control, 

such as Solid State Machines and fuzzy logic controllers have the advantage of 

being able to function in real-time and are robust but are not as rigorous in 

optimisation as for example a DP or MPC strategy (Simoes et al., 2014).  

Learning strategies such as Neural Networks (NN) promise good optimisation 

but are dependent on available training data (Moreno et al., 2006, Gurkaynak et 

al., 2009). According to Gurkaynak et al. (2009) NN are better than RB 

strategies and can be further improved through fuzzy logic. A NN is not 

considered as good as a MPC (Hredzak et al., 2014). 

Energy Management in vehicles can also be done through flexible electric load 

demand (Kessels et al., 2005, Masjosthusmann et al., 2012) where the 

converter to charge the auxiliary battery is switched on and off as part of the 

load control. The auxiliary battery can sustain the load (from auxiliary 
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equipment, such as radio, heaters, window wipers, light, electric windows etc) 

on its own for a limited amount of time.  

In his thesis Rosario (2007) describes a power energy management setup 

which approaches the setup as a management of resources, where the three 

levels are associated with a 3 tier management system (top, middle ,low); i.e. a 

top down approach see also (Rosario and Luk, 2007). The management 

strategy is encapsulated in a fuzzy logic set, which assumes three variables: 

fast, medium, slow. This three level rule based decision framework is enhanced 

upon by Trovão et al. (2013), who further map out the limitation of the battery 

and UC module, making the decision a further fine tuned system by applying 

simulated annealing algorithm to their rule based maps.  

The fuzzy rules were based on the assumption that at lower speeds the likely 

hood of an acceleration event occurring was high thus the UC SoC should be 

high while at high speed the likely hood of accelerations was low, but the likely 

hood of deceleration was high thus the UC SoC required to be low in readiness 

for an influx of energy from regenerative braking. This allows for the reduction of 

the energy needs of the UC module and thus a lighter setup, but the definition is 

vague, since there is no definite certainty that at 60 km/h the probability of an 

acceleration event is higher or lower than a regenerative event and the duration 

and power requirements are not known either. 

The distribution of timing is an important factor in the application of this 

management strategy as described by (Rosario, 2007) the tactical power 

management implementation can be a source of delays for which one needs to 

compensate with a larger bus capacitance to prevent instability. The reason for 

this is the time restriction implemented in the tactical level of the system. The 

power electronics can function at switching frequency which is in micro seconds 
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intervals. The tactical or power management level feeds these signals on a 

millisecond bases. Estimation on the necessary bus capacitance is calculated 

based on the switching frequency (micro seconds), but the introduction of the 

millisecond power level means that the bus capacitance is calculated based on 

this frequency. Thus the bus capacitor needs to be able to filter for a time length 

up to a 1000 times longer (depending on the switching frequency), which 

requires a much larger capacitor.  

2.10.4. Summary 

The three levels of control provide a good break down of the problems 

encountered designing a Power and Energy Management (PEM) strategy but 

provide their own issues such as the possible introduction of chatter and the 

increased size of bus capacitance. In the power strategy it will be important to 

swiftly provide a reference value to the power electronics to be able to keep the 

bus capacitance small.  

The research in this chapter focuses on the smoothing of peak power with a 

certain (unwritten rule) that the battery power never exceeds a certain threshold 

for a longer period of time for example during NEDC driving cycle where the 

total cruising time at high velocity (100km/h or more) is only 40 seconds which 

is only a fraction (3.2%) of the total 1220 seconds of the drive cycle. Luk and 

Rosario (2005) state that the load requirements for electric vehicles are 

constantly varying and thus very user specific. 

Influences such as road gradient, weather, tire degradation, etc, all contribute to 

the load profile (Souffran et al., 2012). Test routes used in research are often 

limited in driving under cruising conditions. The reason for mentioning this is 

that a short period of high speed is treated as a short term peak demand as if 

part of start stop driving and this can be compensated through the use of UC 
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module and sizing. Sizing the UC for a cruising condition or long term 

acceleration (hill climb) will deplete the UC and drop the demand back on the 

battery, which means that either you continue limiting the current from the pack 

or allow it to rise; in the former situation drivability is limited (imagine going into 

limp mode during a drive up hill) and in the later drivability is maintained at the 

expense of temporary loading the battery at a higher current.  

2.11. Literature Review Conclusions  

In Mesbahi et al. (2014, p. 5) 4 different power control strategies are classified: 

 Battery power limitation with UC recharge during stop phase 

 Battery power limitation with UC SoC management 

 Dynamic battery power limitation according to UC SoC 

 Dynamic battery power limitation according to UC SoC with limits based 

on UC SoC  

The PEM system introduced in this paper will have dynamic battery power 

limitation based on power demand and adjustable SoC level management, with 

the aim to keep the current demand from the battery as low as possible and 

approaching average over a period of time. The adjustable UC SoC level allows 

accepting all regenerative energy and is high enough to provide acceleration up 

to a probable velocity. The target is to not change mode from a battery 

perspective since this will result in very short charge / discharge cycles that are 

highly inefficient.  

The energy stage will focus on setting limits for the battery and SoC target for 

the UC with the aim to keep the UC module as small as possible while providing 

optimum support for the battery. The battery power will not be limited because 

this would limit driveability. A set of recorded drive cycles will be analysed and 

probable events will be derived through Markov Chain analysis. This will help in 
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defining the size of the UC module, the time period it needs to cover, the delay 

that can be applied before introducing the battery and the amount of power 

required to top-up the UC in case the UC SoC drops too low. 

Maximising the life span of the battery pack is seen as an important area of 

research which requires tools to test (Knowles et al., 2012a). A hardware 

dynamometer tool was developed for this purpose as described in the same 

paper. This was later further developed for direct connection to a simulator (Kok 

et al., 2012), to create a Human-in-the-Loop setup.  

In the next chapter the rate capacity effect of batteries and battery ripple effect 

will be investigated further. Both have a direct connection to life span of 

batteries. The research will focus on the development of a method to assess 

battery life span through efficiency improvement and as such provide a 

computer approach to life span assessment. 

The research presented will also focus on the ripple effect as seen by the 

battery and which topology is best for the introduction of UC in the drive train, 

the development of a control strategy to manage the power split between the 

energy sources and the development of the energy management control 

strategy. This will then lead to the design a control system which has an 

integrated tactical and power stage which will allow the decrease in size of the 

bus capacitor and assist in chatter avoidance.  

Predictive control through Markov Chain analysis will be investigated for the 

development of an improved Energy Management Strategy.  
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Chapter Three  

 Simulation and Analysis Requirements 

3.1. Introduction 

In the previous chapter the following has been identified as a necessity to an 

optimum power and energy management system: 

 Smooth peak battery current; keeping the battery current as low as 

possible  

 Fast power control  

 Optimised power management strategy 

 Optimised Energy management strategy 

It is not clear what the effects of different topologies are on battery current ripple 

and if this would influence the choice of topology. A method of assessing the 

effect of the optimisation in simulation is required. In the next chapters the PMS 

will be designed followed by the energy management strategy. The complete 

PMS strategy will then be tested through simulation. This chapter will focus on 

developing an approach to assess how the proposed PEMS will improve the 

efficiency of the system.  

3.2. Topology Selection 

3.2.1. Topology selection based on Battery current ripple 

It is reported that a major drawback for boost conditions of the half bridge 

converter is the discontinuous output current (Siang Fui and Chee Wei, 2012). 

Similarly, under buck conditions this discontinuous current can be found at the 

input. In this section the effect of phenomenon will be further discussed, more 
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specifically what the effects are on combining switching converters. The basic 

premise of operation of a switching converter is the on-off behaviour of a switch 

which results in a temporary storage of energy in a storage medium (inductor or 

capacitor) before the temporarily stored energy is transferred to the output. The 

transferred energy results in an output ripple normally smoothed by the output 

capacitor but when the output capacitor has a fixed voltage because it is 

connected to a battery then another phenomenon is observed which will be 

discussed here.  

In Payman et al. (2011) the following graph (see Figure 3.1) was shown which 

depicts a FC configuration with UC module; the UC module is switching in 

(mark point A) and out (marked point B). The combined setup is directly 

connected to the bus. It was noticed that the presented FC current showed a 

ripple doubling from 2 Apeak-peak to around 4 Apeak-peak, which seemed a very 

large increment on a total of 16A load current demand (25% ripple).  

The aim of the research presented here is to investigate the effect different 

topologies have on the battery ripple and the way in which this affects the life of 

the battery. In this chapter, simulations done in Matlab / Simulink with the use of 

the SPS toolbox will be used.  

Note: The ripple effect at the bus is also observed by Miller and Sartorelli (2010) 

who showed in their research that a battery supplied by a UC module has more 

ripple than an UC supplied by a battery with converter. They concluded that the 

Energy Management System (EMS) was the cause for this, but the author will 

demonstrate that this ripple effect is a result of the topology configuration. 
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annotated from (Payman et al., 2011) © 2011 IEEE 

Figure 3.1: Cascaded converter ripple effect  

3.2.2. Topology: Battery with UC Module 

Battery + UC Module - Boost Mode 

Here the battery is directly connected to the bus – i.e. using no converters 

(keeping the strings long) - and a UC with converter is added. The circuit is 

shown in Figure 3.2. This results in a ripple effect as a consequence of the 

addition. The reason for this ripple is the switching effect of the converter. 

 

Figure 3.2: Battery + UC Module 
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In this case the bus is connected to a battery and the bus voltage can be 

considered constant. The resistor represents the load.  

3.2.3. Simulation setup Battery + UC Module 

The bus voltage for this simulation and in this thesis is chosen to be 96 V with 

its maximum being 125V and a minimum of 72V. The choice for this bus voltage 

came about as a result of calculation for a conversion project. The SPS battery 

model was set to Lithium-ion battery and the nominal voltage to 96 V (30 cells in 

series with a nominal voltage of 3.2V). The model’s capacity was set to 50Ah 

(which is an arbitrary chosen capacity since capacity is not of relevance in this 

research because the simulation time is short) and the SoC at 75%. The SoC 

charge was chosen such that the battery would have room to receive some 

charge if so required. The battery is directly connected to the bus which is 

represented by a Current Controlled Source (CCS). The UC was modelled as a 

basic capacitor with internal resistance and based on the Lithium-Ion capacitor 

discussed in section 2.3 Ultra Capacitor (p26). The internal resistance of an 

individual cell is 1.4mΩ (Lambert et al., 2010). The operating voltage of the 

complete string was chosen as a value below the battery minimum. This was 

chosen to avoid diode forward bias which can occur when the UC voltage 

becomes higher than the converter output voltage and results in loss of control. 

The UC simulation parameters are given in Table 3.1. The UC voltage at start is 

set to 60V. 

Table 3.1: UC parameters (18 cells) 

Capacity 122.22 F 

Voltage range 39.60 – 68.40 V 

Internal resistance 25.2  mΩ 
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The converter topology used for the UC module is a Half H-bridge converter. It 

should be noted that the author is aware that interleaved converters would 

normally be used because of the large currents involved to reduce the size and 

weight of the inductor components and increase efficiency but interleaved 

converters increase the number of switching components and as such would 

increase simulation time.  

The converter parameters for the UC module converter are given in Table 3.2. 

The parameters were calculated based on a peak current ripple of 2% of a 

maximum 300 A continuous, while the output voltage ripple was set at 5% bus 

voltage. The duty cycle was calculated based on the maximum ratio which 

would be the minimum input of 39.6V (2.2V*18 Cells) and the maximum bus 

voltage of 125V. When the converter is operating under buck conditions the 

output ripple (at the side of the UC) is set to 5%. This is included for 

completeness but it is recognised that that capacitor will have little effect 

compared to the large capacitance of the UC. The duty cycle under buck 

conditions was calculated using the largest ratio of input and output, which is 

the nominal bus voltage of 96V and the 66.6V, which is the maximum voltage of 

the UC  (3.7V*18 Cells). 

Table 3.2: Battery + UC module Converter Parameters 

Inductor 225 µH 

Cout 3.71 mF 

Cin 21.7 µF 

Switching frequency 10 kHz 

Stability variable (  ) 20 - 

   

The simulation was setup such that a single reference current (    ) or load 

current demand (     ) could be set. During the tests only one variable was 
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altered while the other was kept static. The simulation would run using peak 

current control as shown in Figure 2.11 (p43). The simulation would be run for 

0.5 of a second which is to allow the simulation to stabilise. The simulation 

layout as used in Simulink SPS is shown in Appendix 7. 

3.2.4. Simulation result Battery + UC Module 

A battery is directly connected to a bus with an UC module in support with a 

fixed reference current (        ). The load demand (     ) is varied (20A – 

100A). The battery current ripple effects as observed by the battery can be seen 

in Figure 3.3. As can be seen the battery current ripple does not change with a 

changing load and fixed UC module supply (fixed reference current).  

 

Figure 3.3: Battery ripple current for varying Load - Boost Mode 

The situation was then changed and the load (          ) was kept constant 

and the reference current (    ) varied from 20-100A. The ripple increases in 

direct relation to the level of current supplied from the UC Module (Figure 3.4).  
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Figure 3.4: Battery ripple current with varying Reference - Boost Mode 

 

The two individual states the converter can assume are shown in Figure 3.5 and 

3.6. From these figures it is clear that when switch Q1 of the UC module is in 

the “on” position the battery is providing all demanded load (Figure 3.5), while 

when “off” (Figure 3.6) the UC module supplies the reference value reducing the 

battery current by that amount until a new period starts and switch Q1 is closed 

again.  

  

Figure 3.5: Battery + UC Module – Boost On 

 

Figure 3.6: Battery + UC Module – Boost Off 

In Table 3.3 the state space equations are given that describe the different 

states the converter topology can be in. The assumption made here is that 
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because of the battery the bus capacitor remains constant. It will provide some 

smoothing but for principle of operation it can be considered constant.  

Table 3.3: Topology equations – Boost conditions 

Q1 closed Q1 open 

 
   
  

     (3.1) 

 
  

  
   

    

 
      (3.2) 

       (3.3) 

 

 
   
  

          (3.4) 

 
  

  
   

    

 
         (3.5) 

       (3.6) 

 

  

The difference between these equations and the equations of an ideal boost 

converter are that the output voltage ripple as seen by the battery is zero (3.2) 

and (3.5) and the load during the on period is supplied from the battery which 

will aim to supply all of the demand current while during the off period the 

converter supplies the requested reference current thus reducing the required 

contribution from the battery, which results in the ripple effect.  

Battery + UC module - Buck Mode 

In Figure 3.7 and 3.8 the circuit options for the converter under buck conditions 

are given. The bus current is represented by a current source. The capacitor is 

considered to have a much lower in value than the UC and thus not included in 

calculations. The resistance has been included to simulate the load as seen 

under buck conditions. The simulation was run with the same settings as 

previous except that the load demand is now negative as is the UC module 

current reference. Figure 3.9 shows the simulation result with a constant 

reference (          ) current for the UC module and variable load current 
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(     ) ranging from -20A to -100A. Figure 3.10 shows the results of the 

simulation with a constant load demand (           ) and variable UC 

module reference (    ) ranging from -20 to -100A. 

  

Figure 3.7: Battery + UC Module – Buck On 

 

Figure 3.8: Battery + UC Module – Buck Off 

Both figures are opposite to the graphs reported in Figure 3.3 and Figure 3.4. 

The equations are provided in Table 3.4 which show the similarity for the battery 

current equations: (3.2) = (3.12) and (3.5) = (3.9). 

 

Figure 3.9: Battery ripple current for varying Load– Buck Mode 
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Figure 3.10: Battery ripple current for varying Reference – Buck Mode 

 

 

Table 3.4: Topology equations – Buck conditions 

Q2 closed Q2 open 

 
   
  

          (3.7) 

   

    

  
     

   

 
 (3.8) 

                    (3.9) 

 

 
   
  

      (3.10) 

   

    

  
    

   

 
 (3.11) 

                (3.12) 
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3.2.5. Topology: Cascaded 

Cascaded Converter – Bus Converter Boost Mode 

In Figure 3.11 the layout of a cascaded topology is shown. It can be recognised 

that the left hand side of this circuit (to the left of the Battery) is the circuit 

discussed previously. The right hand side is the converter providing the bus with 

the demanded current.  

 

Figure 3.11: Cascaded Topology 

 
The input current for a basic boost converter in both on and off conditions is 

given in Table 2.2 (page 39) and repeated in (3.13), with    renamed to     . 

From the previous topology it is known that the battery current can be described 

by the inductor current from the UC module and the load demand current. This 

means that when the bus converter is functioning under boost conditions the 

ripple effects the battery experiences are the same as reported earlier.  

          (3.13) 

Setting     
 

 
 then the battery current ripple in cascaded topology, with both 

converters under boost conditions, is described by equations (3.2) and (3.5) for 

the different states.  

If only the bus converter is in boost mode (UC module in buck mode) then the 

relevant equations are given by (3.9) and (3.12). This would mean that any 

simulation results show a degree of similarity. 
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3.2.6. Simulation setup - Cascaded Converters 

The bus voltage is again fixed at 96V which means that to avoid diode bias the 

battery voltage is lowered to 76.8 V (this would equate to 24 cells in series of 

3.2 V nominal voltage – the battery minimum and maximum voltages are 60V 

and 87V respectively) to ensure this is avoided. Because of the lower battery 

voltage the UC Module converter requires different parameters to deal with the 

different input (39.6V) – output (87V) ratio while ensuring the same peak current 

ripple through the inductor. The inductor ripple current was set to 2% of 500A 

continuous which would be a 10A peak-peak ripple, while the output ripple was 

established at 5% of the bus voltage. The parameters for the bus converter and 

the new parameters for the UC Module converter are shown in Table 3.5. The 

parameters for buck converter operation of the UC module are now define 

through the battery nominal voltage and the maximum UC capacitor voltage. 

The output capacitor under buck conditions is 5% of the output maximum 

voltage. 

The converter control is again peak current control only, while the bus converter 

has a voltage controller setting the reference current. The values for the PI 

controller are: P = 2, and I = 1000. The simulation layout as used in Simulink 

SPS is shown in Appendix 7. 

Table 3.5: Cascaded topology - Converter Parameters 

Bus Converter UC Module Converter 

Inductor 156 µH Inductor 180 µH 

Cout 4.70 mF Cout 3.09 mF 

Cin 23.5 µF Cin 22.5 µF 
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3.2.7. Simulation results – Cascaded Converters 

The first simulation is run with      = 50A while       is varied from 20 – 100A in 

5 steps. This simulation is shown in Figure 3.12 and shows a good similarity 

with Figure 3.3. It should also be noted that the ripple design was set at 10App 

and the ripple has doubled as a result of the converter-converter interaction. 

Figure 3.13  shows a similarity to Figure 3.4 but the effect of the inductor current 

from the bus converter can clearly be seen. Despite this, the ripple still 

increases with the contribution provided.  

 

Figure 3.12: Cascaded Converters - Battery ripple current for varying Load– Boost Mode 
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Figure 3.13: Cascaded Converters - Battery ripple current for varying Reference – Boost Mode 

 
The next simulation shows the UC Module converter operating in buck mode 

and the bus converter in boost mode. Figure 3.14 shows the simulation with 

varying       (20-100A) and constant     = -50A. The difference here is that the 

ripple remains constant but shifted upwards as a result of the load through the 

converter. Figure 3.15 shows the simulation with constant       = 100A and 

varying      (-20 to -100A) and this shows the same shift effect. 
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Figure 3.14: Cascaded converters - Battery ripple current for varying Load – Buck Mode 

 

 

Figure 3.15: Cascaded converters - Battery ripple current for varying Reference – Buck Mode 
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Cascaded Converter – Bus Converter Buck Mode 

When the bus converter operates under buck conditions the output current (   ) 

is given for both the on and off condition in an ideal converter (Table 2.3, 

repeated here (3.14)). 

  
  

  
      

 

 
 (3.14) 

The battery replaces the capacitor but the output current is depending on switch 

Q22 (3.15).  

Q22 is on Q22 is off  

                      (3.15) 

These equations that define the battery ripple are the same as found in (3.9) 

and (3.12), which would indicate that the ripple effects are similar as well.  

 

Figure 3.16: Battery ripple (buck-buck) – constant UC module support 

 

For simulation the bus demand was in a range of -20 to -100A, while the UC 

module recovery was set to 50A. The results are shown in Figure 3.16. The 
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combination of inductors before and after the battery combined with the filter 

capacitors provide a degree of smoothing which brings the ripple down 

compared to Figure 3.9.  

For the variable UC module reference simulation the reference was set in the 

range of -20 to -100A while the bus demand was kept constant at -100A.The 

results are shown in Figure 3.17. The figure is much like Figure 3.10 showing 

an increase in ripple when the UC module increases the amount it recovers.  

 

Figure 3.17: Battery ripple (buck-buck) – constant load demand 

 

In the operation of a BEV with UC module the control strategy is often to a) 

support under acceleration (Figure 3.10) or b) maintain a certain target SoC by 

charging the UC with or without battery support - in preparation for another 

acceleration event (Figure 3.17). Under both conditions the battery ripple is a 

direct relation to the amount of support from the UC module. 
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3.2.8. Topology:  Parallel 

In the parallel topology (Figure 3.18) the sources are separated from one 

another and as a result the battery ripple current is the same as the inductor 

current of the ideal converter – buck and boost - as shown in Table 2.2 and 

Table 2.3.  

 

Figure 3.18: Parallel Topology 

Simulation Setup – Parallel converters 

The bus voltage is again set at 96V. The battery and converter setup and 

control are the same as in the Cascaded Topology (section 3.2.6) while the UC 

Module setup is the same as in section 3.2.3 (Battery + UC Module). The 

simulation layout as used in Simulink SPS is shown in Appendix 7. 

Parallel converter – boost condition 

The simulation results of both converters operating under boost conditions are 

shown in Figure 3.19 and 3.20. The results showing a fixed ripple under the 

different operating conditions and the size of the ripple is as specified in the 

design specifications. Here it can be seen that the effect of the switching has no 

effect on the inductor current ripple. The reason is that the diodes block any 

return current provided the bus voltage is well controlled and does not fall below 

the voltage level of any of the sources. In Figure 3.19 at 20A load demand the 
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battery converter is operating under buck conditions since the UC module 

supply is more than demanded. 

Operating the battery converter in boost mode and the UC Module converter in 

buck mode does not change the battery ripple current since the battery current 

is not affected by any other influences as shown in the previous topologies. 

 

Figure 3.19: Parallel converters - Battery ripple current for varying Load 
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Figure 3.20: Parallel converters - Battery ripple current for varying Reference 

Parallel converter – buck condition 

The ripple effect is the same for the parallel converters with both converters 

operating under buck conditions (Figure 3.21 and 3.22) except that when both 

converters operate under buck conditions the control is sensitive to instability, 

which is a result of the bus being disconnected from both sources at sometime 

during the period.  But since energy recovery in the battery is less efficient this 

is a situation that should be avoided.  
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Figure 3.21: Parallel converters - Battery ripple current for varying Load  

 

 

Figure 3.22: Parallel converters - Battery ripple current for varying  
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Parallel converter – bus capacitor 

In Figure 3.23 the currents through the bus capacitor are shown (simulation 

data same as in Figure 3.20: i.e. a constant load with a varying value for the 

reference current of the UC Module converter). As can be seen the capacitor 

receives and supplies (smoothes) the current from the two converters providing 

a smooth bus voltage. Figure 3.24 shows a 50% timing offset to the converter of 

the UC module. Effectively 2 parallel converters (albeit with different sources) 

can be interleaved by offsetting one of the PWM signals as is done in 

interleaved converters. 

 

Figure 3.23: Parallel Topology - Bus Capacitor 

Providing a timing offset to the operation of the two converters provides the 

same figure for the individual currents but an interesting effect occurs at the 

output as shown in Figure 3.24. The timing offset applied is 50% of the period 

which reduces the current ripple as seen by the bus capacitor. This will not 

necessarily allow for the capacitor size to be reduced but it will reduce the 
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stresses as experienced by the bus capacitor. From Figure 3.24 it can be seen 

that the current swing as experienced by the capacitor ranges from -50 to + 50A 

while the current swing without timing offset (Figure 3.23) ranges from -100 to + 

50A.  

 

Figure 3.24: Parallel Topology - Bus Capacitor (with timing offset) 

The duty cycle of each converter is defined by the ratio of output voltage over 

input voltage (Erickson and Maksimovic, 2001), which for the boost converter is 

defined as:  

     
  

  
 (3.16) 

From equation (3.16) it will be clear that as    approaches    the duty cycle 

approaches 0. And vice versa, the duty cycle will approach 1 when    falls to a 

very low value. This means that the width of each pulse even when the 

converters are supplying the same current is different. Also, the amount of 

current each converter is contributing is not necessarily the same which means 

that at low battery current and high current from the UC the bus capacitor 
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responds differently to this then when reversed. The most optimum value for the 

delay is not just 50% (as in 2 interleaved converters from the same source) but 

it is a function of the ratio of input to output voltages and current contributions.  

3.2.9. Summary 

If the choice is made to use an UC module to supplement the power demand 

then the most optimum topology is the parallel topology based on the research 

presented here of which the advantages include:  

 Individual source ripple control 

 full control of the current ripple on each source independent of each 

other 

 potential to reduce stresses for the bus capacitor under acceleration 

conditions 

To counter the increased ripple effect in cascaded and single converters 

additional filtering is required, which in turn results in added weight, which is a 

function of the current it is required to support (Erickson and Maksimovic, 2001) 

(see also the Inductor on page 36). In addition, this setup sacrifices control from 

the batteries perspective because the battery ripple will now be a result from the 

total amount of power required during part of the period and the level of power 

contributed from the UC module during the other part. A converter would return 

control to the battery and allow a maximum battery current ripple to be set 

whereas a filter would just reduce the ripple but provide a simpler 

implementation. It is interesting to note that the inductor ripple current is not 

related to the ripple as experienced by the battery. The battery ripple is directly 

related to the amount the UC module is expected to support, which thus affects 

the size of the required filter: i.e. if the support required from the UC module is 

high the filter required needs to be able to filter these higher value peaks.  
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Another drawback found in the cascaded topology is that the bus converter has 

to be designed for peak current under all conditions (see equation (3.17)) 

compared to the parallel converter where each individual converter can be 

designed for a combined peak current, this is shown in equation (3.18).  

             (3.17) 

                    (3.18) 

The battery converter could be designed for cruising power, which would still be 

less than maximum allowed peak power while the UC can then be designed to 

supply the remaining power demand. This would keep the converter design 

smaller and lighter. This is further described in Kok et al. (2014). The results 

shown here also show that the novel design shown in chapter 2.8 Topology 

Comparison is likely not the best candidate due to ripple effects seen by the 

battery. This topology is not further investigated in this thesis because the ripple 

experienced by the battery would result in direct effect of battery aging, which 

would result in direct capacity loss and thus be a direct contradiction to the goal 

that is to be achieved; improvement of efficiency. The use of the cascaded 

structure would result in a ripple as seen by the battery which would be a 

function of the UC contribution, as explained in 3.2.1 Topology selection based 

on Battery current ripple (page 81). The effects of free flowing currents through 

the diodes would contribute to any ripple effect. 

3.3. Chosen Topologies 

The topologies chosen for simulation are shown in Figure 3.25 of which 

Topology 1 will serve as the baseline reference; Topology 2 is a reference for 

effects of current increase as seen by the battery as a result of using a 

converter; Topology 3 and 4 are chosen based on the research which suggests 
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these are the most likely candidates for future use in BEVs. The difference in 

efficiency will be a factor in deciding which topology is considered best.  

Each topology will be simulated over four drive cycles in order to compare the 

performance of both the topologies and the PEM strategy. The performance 

improvement indicators will be: efficiency, weight, volume, cost and life span of 

the battery pack. 

 

  
Topology 1 Topology 2 

  
Topology 3 Topology 4 

Figure 3.25: Topologies in Simulation 

Topology 1: Battery only 

Topology 2: Battery with Converter 

Topology 3: Battery with UC Module 

Topology 4: Battery with Converter and UC module (parallel) 

 

3.4. Battery Efficiency - Rate capacity effect  

3.4.1. Rate Capacity effect – constant current discharge 

The rate capacity effect is visible in both lead acid and lithium-ion batteries 

(Doerffel and Sharkh, 2006). This makes the choice of allowed current demand 

a feature for trade-off in battery pack design. The rate capacity effect of high 

pulsed currents demand affects batteries more than equivalent constant current 

discharge (Donghwa et al., 2011) and the effects seem to be non linear, which 
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means that at lower levels and reduced pulses the available energy remains at 

highest level. For use in simulations it would be useful to know how the rate 

capacity effect changes under different current demands and whether this can 

be transferred across different batteries. 

In order to gain a better understanding of the benefits of peak power reduction 

various constant current discharge tests were undertaken at the University of 

Sunderland. Two different batteries were repeatedly charged to full and then 

discharged using different currents. Two types of battery (90Ah and 130Ah) are 

used and are further described in Appendix 5. 

Equipment 

The equipment is supplied by MDL technologies (www.mdltechnologies.co.uk) 

and is comprised of:  

 Chroma Programmable DC Electronic Load (63205) 

 Chroma Programmable DC Power Supply (62100H-30) 

 Chroma Battery Charge / Discharging software 

 Datum XL100 Data logger for temperatures 

The results of the different tests are shown in the figures below. The maximum 

discharge current possible was 180A. The tests were repeated with different 

batteries; with each test consisting of 22.5, 45, 90, 135, and 180A discharge 

rate. The results were averaged and plotted (Figure 3.26 - 3.27).  

The standard deviations of all tests (Appendix 11) were found to lie within a 

95% confidence interval from the mean value and it was concluded that the 

mean provides an adequate representative of the sample. 

http://www.mdltechnologies.co.uk/
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Figure 3.26: 90Ah Capacity Test 

 

Figure 3.27: 130Ah Capacity Test 

These results indicate that the savings in terms of capacity are not really 

impressive. Overall there is some improvement at lower currents but the 

difference between 180A and 25A discharge rate at 90Ah is only 3.37%. While 

for the 130Ah battery this is even less and is in the region of 0.5%.  

The current discharge values were then multiplied with their accompanying 

voltage level and normalised on an hourly rate. The results are shown in Figure 

3.28 and 3.29 . 
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Figure 3.28: 90Ah Energy rating 

 

 

Figure 3.29: 130Ah Energy rating 

At a lower discharge current the battery voltage remains higher which results in 

a high energy output. The data was then plotted on a C-rating scale and 

normalised, which then allows comparison between different batteries Figure 

3.30. From (Donghwa et al., 2011) a data set for a 350mAh battery was 

retrieved. The data was presented in a C rating of 1 up to 6. For each battery a 

third order polynomial was derived based on the C-rating – Energy plot and 

then the polynomials were normalised and plotted on a range of 0 to 2C which 
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is shown below. Despite coming from different batteries (different C-ratings) 

with each having different nominal voltages, the 3 data sets show a very close 

approximation to each other. The polynomial is provided in (3.19). 

                                      (3.19) 

Where y is the normalised energy output and x is the input in C-rating. The 

normalised energy output multiplied by 100% gives the percentage of energy 

available from the battery.  

 

Figure 3.30: Battery test data normalised to C-rating 

 

Since the polynomial function derived from the Donghwa et al. (2011) data is 

more accurate for higher ranges and the lower ranges show a good fit with the 

higher energy batteries this equation has been used to calculate a percentage 

improvement depending on discharge current. This is shown in Table 3.6. In 

this table each row shows the C-rating and how much energy can be retrieved 

(in percentage) from a battery. In the last two columns is shown how this C-

rating then equates to a battery current based on the battery’s Ah rating. The C-
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rating is the input to equation (3.19), while the output times 100% is the 

percentage rating. Figure 3.31 shows the graph of the efficiency polynomial.  

Table 3.6: Efficiency based on equivalent current 

  

Equivalent Current 

C rating Wh(%) 90Ah 130Ah 

0 100.00% 0 0 

0.25 97.84% 22.5 32.5 

0.5 95.88% 45 65 

0.75 94.07% 67.5 97.5 

1 92.40% 90 130 

1.25 90.82% 112.5 162.5 

1.5 89.31% 135 195 

1.75 87.83% 157.5 227.5 

2 86.35% 180 260 

2.25 84.84% 202.5 292.5 

2.5 83.27% 225 325 

2.75 81.60% 247.5 357.5 

3 79.81% 270 390 

3.25 77.86% 292.5 422.5 

3.5 75.72% 315 455 

3.75 73.36% 337.5 487.5 

4 70.75% 360 520 

 

Figure 3.31: Battery Energy efficiency based on C-rating 
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Miller et al. (2009a) states that batteries prefer a C rating discharge of 2C or 

less; above this value there is increased temperature development. The 

difference between a 2C and a 0.25C discharge for any battery – according to 

the equation (3.19) is: 11.49%. 

During operating conditions the current should be kept as low as possible since 

this provides the highest voltage level of the battery and thus the most energy 

from the battery. The reduced current results in reduced heat development 

which results in lower rate of temperature increase which allows for improved 

control to avoid overheating of the battery pack which is a main cause of aging 

and thus this would improve the live span of the battery  (Lacey et al., 2013, 

Wang et al., 2014). Under cruising conditions the battery current should not 

exceed its 2C rating.  

3.4.2. Rate capacity effects – pulsed discharge < 1C 

It often seemed that the UC module was designed and controlled to supply the 

whole peak current from standstill as well as being the first to respond. To test 

the effect of current slopes on the capacity of batteries the following tests were 

conducted on a 90Ah battery, see Figure 3.32-3.34: 

 Test 1 - Period of 20 second with a 50% duty cycle, peak current at 80A, 

no slope limitation 

 Test 2 - Period of 10 seconds with a 50% duty cycle, and current slope 

limitation of 80A/s  

 Test 3 - Period of 2 seconds with a 50% duty cycle and current slope 

limitation of 80A/s 

 Control - Constant current discharge of 40A 
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Figure 3.32: Different pulse test and the resulting capacity 

Equipment 

The test setup of for battery current slope testing is shown in Figure 3.33. The 

setup is comprised of a LD300 DC load, A DPO2014 Tektronix oscilloscope and 

a computer to store the recorded data. The interface for recording data is 

National Instruments’ SignalExpress Software. 

 

Figure 3.33: Battery test setup 

 

Two types of battery (90Ah and 130Ah) have been tested; their respective full 

specifications are reported in Appendix 5. 
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3.4.3. Results 

At 80A pulsed discharged (40A average) no significant results were found, 

which leads to the conclusion that while at high pulsed currents the battery 

suffers from rate capacity effect (Donghwa et al., 2011) this is not the case at 

below 1C pulsed discharge. In this test 80A pulsed with 50% duty cycle 

compared to 40A constant current discharge.  

 

Figure 3.34: Pulsed zoom plot 

 
This means that a battery could be the first to supply the current as long as the 

duration of the demand is longer than 2 seconds and the demanded current 

does not exceed half the battery’s rated capacity. This also means that a battery 

and UC module could start at the same time to allow for combined peak power, 

which allows for the UC module converter to be designed to a lower power 

rating. The duration plays an important role here in that a shorter pulsed 

discharge could have an effect, but this can be filtered out with the use of the 
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UC module. For example: if the demanded current is pulsed, high and less than 

2 seconds then the control should let the UC module supply the demand. The 

battery can then recharge the UC after the event at a) a lower averaged current 

and b) without ripple. This would extend the working time of the battery while 

the UC module reduced the peak demand. The effect where pulsed discharge 

and constant current are no longer similar could potentially be seen at higher 

currents but at the time the equipment did not allow us to investigate this.  

3.4.4. Summary 

Any pulsed demand current below 1C does not result in a significant difference 

towards the rate capacity effect, which combined with the results earlier allows 

for the battery to provide initial current provided this is limited (but still as low as 

possible) and the duration longer than 2 seconds.  

The reasoning here is that immediately after an acceleration event the battery 

would need to supply current to the UC. The UC needs to be set at a predefined 

SoC in anticipation of another acceleration event. Combining the power 

supplied from both sources allows for a reduction in UC converter power and 

because of the direct support from the battery a potential reduction in size for 

the UC since its focus is on power supplement more than energy supplement. 

The proposed formula is for a period of constant discharge and is a good 

indicator of how efficient a battery will be for different currents on periods longer 

than 2 seconds. 

3.5. Battery Efficiency – Under Regeneration  

In Table 3.7 the differences between different drive cycles from the point of view 

of regeneration are shown. These drive cycles are described in full in section 

3.8.2 (page 121). As can be seen from the table the total number of 
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regeneration events is equal across three of the drive cycles and low on the 

NEDC which can be expected because of the urban drive included. According 

to (Miller et al., 2009a) energy recovery for a battery during a regeneration 

event of less than 10 seconds is less than 60% effective, up to 20 seconds 

energy recovery will only reach up to 70% effectiveness, with energy recovered 

over a period longer than 20 seconds reaching around 90% round trip 

efficiency.  

The data in Table 3.7 shows that over a whole drive cycle there are limited 

regeneration moments that last long enough (>20 seconds) to achieve 90% 

efficiency, most moments of regeneration are very short and below 10 seconds. 

For the two eco-drive cycles the energy recovered was calculated (not round 

trip but what the sensors reported was returned to the battery) and the values 

for ECOn and ECOp were 1111 kWs and 1100 kWs, respectively. This is a 

small difference and seems to suggest (the sample size is only two people) that 

the gain in energy between the two driving styles is largely due to the 

acceleration and vehicle speed; i.e. the most important aspect of the driving 

style is the current leaving the battery. While the amount of regeneration 

supports longer driving by recuperation of energy per person the difference is 

marginal. More in depth study is required in this area since it is not the focus of 

this thesis. The data suggest that the most number of regeneration events last 

less than 20 seconds and account for most of the regenerative energy available 

for recovery. As the average duration of all combined regeneration events is 

less than 10 seconds, the efficiency factor for regenerative energy will be set to 

60% for analysis purposes. 

The energy the battery stores (       ) is calculated based on how much energy 

is supplied (     ) and the inefficiencies of the storage process and the 
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converters. If the energy is stored in the battery than the equation is provided in 

(3.20): 

                           (3.20) 

Where       the battery efficiency under charging is conditions less than 10 

seconds (60%) and       is the battery converter efficiency (95%) if applicable. 

Table 3.7: Moments of Regeneration 

 

NEDC NYCC ECOn ECOp 

  

kWs 

 

kWs 

 

kWs 

 

kWs 

Moments of regeneration 18 

 

41 

 

41 

 

41 

 Total regeneration (time in s) 178 433 151 224 281 1111 294 1100 

Duration of Drive Cycle (s) 1220 

 

599 

 

894 

 

954 

 Percentage time regen (%) 14.59 

 

25.21 

 

31.43 

 

30.82 

 Regen moments T >= 20 (s) 1 178 0 0 2 148 2 171 

Regen moments T >= 10 < 20 (s)  8 146 2 26 7 452 11 589 

Regen moments T < 10 (s) 9 109 39 198 32 511 28 339 

average time (s) 9.89 

 

3.68 

 

6.85 

 

7.17 

 

         

3.6. UC Module and Converter Efficiency 

Next the efficiency of the UC module needs to be established as well as 

operating limitations.  

Assuming the UC starts each drive cycle empty and requires charging from the 

start the UC module has 2 operating modes - the assumption is that the energy 

content of a charged UC pack does not contribute significantly to the driving 

range which in the proposed design the total energy of the UC pack would be 

around 1% of a 24 kWh pack: 

 Recovery from regenerative conditions 

 Charging from battery (top up) 
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During conditions where the UC is recovering energy from the bus, the current 

travels from the bus through the converter to the UC and afterwards back out 

from the UC through the converter results in equation (3.21). This equation 

describes a value for round trip efficiency: energy received * energy supplied 

                          
  (3.21) 

The following assumption is made, because converters have reported 

efficiencies between 98% and 92%, an average of 95% has been chosen for 

simulation purposes (Miller et al., 2007, Ibanez et al., 2012).  

The UC efficiency is split between recuperation / charge (      ) and discharge 

(       ). The discharge efficiency has been calculated to be 92% @ 62.5 V for 

394A. A current of this magnitude would exceed the rated current of the 

capacitor. At lower 59.8V and 161A the efficiency is 95%. This means three 

strings of UCs are needed to achieve efficiency at the higher current. The 

calculated efficiency is in line with Fuyuan et al. (2010) who also show the UC 

regeneration / charge efficiency has the same efficiency level. Thus the 

efficiency calculation can be simplified to:  

         
       

  (3.22) 

In the proposed setup the voltage is allowed to fall further but this should only 

happen (and at the maximum allowed current) in very rare occasions and with 

limited duration. The calculated value for UC Module round trip efficiency, the 

efficiency is:                  which is higher than the efficiency as seen by 

the battery at rates less than both 10 and 20 seconds. Thus it makes sense to 

design the system such that no energy will be recovered in to the battery if it 

can be avoided. In the simulations the UC will have its internal resistance 

modelled as part of the simulation but the efficiency is not included in the 

models.  
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It is suggested that an UC with converter should maintain an efficiency of 

greater than 92% (Miller, 2007b). This means a charge – discharge (round trip) 

efficiency of 84.6%. At high currents and low voltage this has already been 

proven to be difficult. This provides another reason to keep the UC voltage high: 

at low UC voltage the current needs to be higher from the battery to prepare the 

UC for another acceleration event compounding the inefficiencies of the system. 

Being able to delay the moment that the battery current reaches its maximum is 

thus also a desired feature in the energy management system. 

The converter efficiency under previously calculated lowest UC efficiency 

should thus be 96.8%. Obviously the round trip efficiency will be impacted by 

the actual current drawn or supplied: at high currents the efficiency of the 

converter is lower as well. The converter efficiency for analysis will be set to an 

average of 95%.  

3.7. Efficiency Analysis  

From an efficiency perspective the bus will be used as reference. Since the 

simulations have been completed all the recorded variables should result in a 

stable bus voltage and equilibrium in current in and out.  

The energy seen at the bus from the battery is calculated through:  

                                (3.23) 

Where   is the energy used by the bus,      is the power as seen by the battery 

at 1 second interval (drive cycle interval),      is the efficiency function which 

outputs the efficiency based on the current drawn and       is the battery 

converter efficiency value if applicable. The converter efficiency is one if no 

converter is present. 
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The battery discharge efficiency has been included in this equation because it 

will provide an improvement with the proposed Power and Energy Management 

strategy. This improvement is expected to be offset against the introduction of 

the converter in line with the battery. Since the battery benefits from not having 

to supply peak demand the assertion is that the overall efficiency is higher: this 

provides an efficiency improvement from the battery perspective resulting in 

more energy where a non optimised system would have less energy. This does 

not include any energy recovered under regenerative braking. The energy 

recovered under braking will be set at 60% as discussed earlier.  

From a similar perspective the energy supplied to and retrieved from the UC is 

calculated in round trip efficiency: 

                          (3.24) 

Where        is the power recovered from the bus in to the UC at 1 second 

intervals.  

In order to test the hypothesis that an optimised power and energy 

management strategy can result in drive train downsizing a test metric has been 

developed that states that the total efficiency as seen by the bus is equal or 

higher than the efficiency as seen by the baseline measurement. In other 

words, the introduction of converters and UCs should improve the overall 

efficiency; resulting in current drawn from the battery at higher efficiency 

through the use of the UC module.  

3.8. Simulation setup 

3.8.1. Introduction 

For the final simulation it was chosen to use a technique called forward inverse 

dynamic (Froberg and Nielsen, 2008). A drive cycle is used to create a power 
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profile which is then supplied as an input to a Simulink model. In the Simulink 

model the power demand is divided by the bus voltage to provide the current 

reference for the Current Controlled Source which is used to represent the bus 

demand. In this way the focus of the simulation is on the energy and power 

sources and the combining power electronics. The disadvantage of this 

approach is that any demand exceeding a designed maximum still need to be 

matched to avoid the bus to collapse. In converter / inverter design a limit would 

often be included in the maximum allowed power. In our simulations the 

assumption is made that the converter can handle any demand as seen by the 

bus. While this may not be entirely accurate it is in line with the design 

philosophy that the drive ability should not be compromised. This chapter 

explains the setup in detail of this simulation setup.  

3.8.2. Drive Cycles used in Simulation 

The different topologies will each be simulated over four different drive cycles, 

shown in Figure 3.35 - 3.38. The first two drive cycles represent urban and city 

driving respectively. 

 New European Drive Cycle (NEDC) 

 New York City Cycle (NYCC) 

The NEDC is a drive cycle consists of 3 different accelerations. This is repeated 

4 times after which a longer period of acceleration to higher velocities is done. 

The cycle represents urban and extra urban driving. Its maximum velocity is 120 

km/h and it is the longest of the chosen drive cycles at 1220 seconds. 

The NYCC represents city driving. It is characterised by a variety of sharp 

acceleration and deceleration moment. The achieved top speed is 50km/h and 

with 599 seconds it is the shortest drive cycle. 
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The third and fourth chosen cycles are real life recordings of two participants 

from a different study. The data from this study by Knowles et al. (2012b) was 

analysed for the best and worst lap in terms of total energy use, duration and 

acceleration and deceleration. 

 Standard Lap non eco (ECOn) 

 Standard Lap eco (ECOp) 

The standard lap was 11.5km long. The main details are provided in Table 3.8.  

Table 3.8: Standard Lap data summary 

Driver Energy (kWs) duration (sec) Max 
 

  
 min 

 

  
 

ECOn 6535.38 863 2.24 -3.58 

ECOp 4553.45 923 1.79 -2.24 

     The speed profile and calculated power profiles are shown in Figure 3.35 - 3.38. 

Interestingly despite the same distance the difference in energy between ECOn 

(6535 kWs ) and ECOp (4553 kWs) is 1982 kWs which means the ECOn driver 

required 30% more energy. 
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Figure 3.35: NEDC: New European Drive Cycle 

 

Figure 3.36: NYCC: New York City Cycle 
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Figure 3.37: ECOn: ECO negative drive cycle 

 

Figure 3.38: ECOp: ECO positive drive cycle 
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3.8.3. Vehicle 

The forces working on a vehicle are well described by - for example Larminie 

and Lowry (2003) - and the basic equations are give here: 

The necessary propulsion force (or tractive effort) is calculated through the 

following equation:  

                                   (3.25) 

Where the individual elements of the equation are given below:  

             (3.26) 

    represents the force through rolling resistance and its components are : the 

rolling resistance coefficient (   ), the mass of the vehicle ( ) and  , the 

gravitational constant. The aero dynamic drag is defined as: 

     
 

 
           (3.27) 

Where   is the air density,   is the frontal surface area of the vehicle,    is the 

drag coefficient and   is the velocity of the vehicle in m/s. 

The third element is the hill climbing force, which is given by: 

                 (3.28) 

In which   is the angle of the slope in degrees.  

 The final force acting on the vehicle is the lateral acceleration: 

              (3.29) 

Where   is the acceleration of the vehicle in m/s2. And the value of 1.05 

represents the inertia effort based on a percentage of the lateral acceleration 

(   ) instead of calculating the rotational acceleration from the motor. 
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Tractive effort can be defined by the force delivered from the motor, through the 

gears. This is dependent on the gear ration ( ), tire radius ( ), an efficiency 

factor ( ) and the torque at the motor (  ): 

      
 

 
      (3.30) 

 

Motor velocity is defined by: 

     
 

 
 (3.31) 

The power at the wheels (  ) is related by the power balance equations to the 

power supplied by the motor (  ) and the power supplied by the bus (  ). In the 

following equations these relations are shown and efficiencies (gear system -    

and motor and motor controller efficiency -   ) in the transfer of the power are 

included. 

 

         

        

       

(3.32) 

Power at the bus and the power at the motor are related according to the 

following equations: 

 
         

       
(3.33) 

The calculations are based on a previous project where a Nissan Micra was 

converted to run electric. For the current simulations the battery weight plus the 

laden weight is set to 1200kg. The auxiliary power drain was ignored since this 

can be seen as a constant small drain and would not significantly affect the 

traction pack in terms of losses. Kessels et al. (2005) report on 2 values for 
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average auxiliary load demand: 250W and 500W. In context this would mean an 

auxiliary power drain of 500W / 96V ≈ 5A on the traction pack.  

The equations (3.25)-(3.33) were used in a Matlab program to calculate a power 

profile from a given drive cycle as shown in Appendix 8. This information was 

then loaded in the workspace for use by the Simulink model.  

3.8.4. Basic Simulation Layout 

Figure 3.39 shows a basic simulation layout of a battery and converter setup. 

The bus voltage was set at 96 volt (30 cells). The number of batteries cells in a 

string when connected to a converter was set to 25, which results in a nominal 

voltage of 80V. The battery model parameters were based on TS-LFP90AHA 

battery (see Appendix 5) and established according to Tremblay (2009). In 

Appendix 9 are provided the different setup variables for the two battery strings 

used. The UC specifications are given in section 5.4.2 UC Module (p155). The 

minimum and maximum bus voltages settings are set at 72 – 125V.  

The “simin” block reads in data from the workspace in the form of the power 

profile for a particular drive cycle. A Matlab program was written that called the 

Simulink model while preparing the time the model should run for and the drive 

cycle power profile it should use. The Matlab program can be found in Appendix 

10.  

3.8.5. DC-DC converter 

The simulation setup of the converter in SPS is shown in Figure 3.40. The 

method of operation, the converter control strategy setup as well as the tuning 

of the control variables are described in section 2.5) DC-DC Converter.  
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The switching from boost to buck state when required is achieved through the 

use of enabled subsystems around the different control layouts as is shown in 

Figure 3.41. The choice for buck or boost mode is defined by comparing the 

control signal from the PI controller to zero and when lower the buck mode is 

enabled, while when the result is higher the boost mode is enabled. The only 

exception is in the parallel topology for the battery control, since here the buck 

mode is only activated when the UC is full. Inside each subsystem the enabled 

port and “outport” need to reset when enabling and disabling respectively.  

 

Figure 3.40: Bi-directional DC-DC Converter as modelled in SPS 

3.8.6. Converter Parameters 

Table 3.9 shows the parameters for the simulation of the 4 topologies identified 

in Figure 3.25. The parameters are established according to the formula’s 

provide for the inductor value for boost converter equation (2.6) which is based 

on the largest ratio of           and the allowed ripple (1A). The value for the 

output capacitor under boost conditions – equation (2.9) – also requires the 

value for bus voltage ripple, which is set at 0.48V. The input capacitor can be 

calculated by using equation (2.7) to calculate the resulting inductor ripple 

current under buck conditions using the nominal bus voltage (96V) and the 
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lowest output voltage (62.5V for the battery string and 50.6V for the UC string) 

to calculated the duty cycle. The allowed voltage ripple is set to 5% of the 

output voltage (the output voltage under buck mode is the input voltage for 

boost mode). For the converter supporting the UC a value for input capacitor 

was calculated based on a 5V allowed ripple. This capacitor has no influence 

compared to the much larger UC capacitor. The values for Ma were calculated 

according to equation (2.25). 

 

Figure 3.41: Buck - Boost selection 

The converter parameters for the battery converter in Topology 4 are the same 

as in Topology 2 and the UC module parameters from topology 4 are the same 

as in Topology 3. Topology 3 does not have a voltage control loop since the 

battery voltage is the bus voltage. In the same table also the control variables 

(proportional and integral) are given as well as the stability variables. The 

values for the PI controller are established according to the method described in 

section 2.5.4 (page 41) and a stable solution was sought between the boost and 
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buck modes. Although converters can operate at much higher frequencies a 

lower frequency of operation was chosen to facilitate a fast simulation time.  

Table 3.9: Simulation parameters 

 Battery converter UC Module Converter 

Inductor 6.25 mH 6.02 mH 

Cin 8.72 uF 7.95 uF 

Cout 181 mF 172 mF 

Kp 6 6 

Ki 300 300 

Frequency 2500 Hz 2500 Hz 

Ma (boost / buck) 2 / 2 2.47 / 1.68 

   

3.8.7. Data out 

The requested output data is gathered either directly as a Simulink signal into 

the “Bus Creator” block or through the use of the multimeter which requires this 

measurement option to be activated in the converter components and CCS. 

The “To-File” block gathers the data from the “Bus Creator” and outputs it as a 

Matlab Array file. The frequency used in the simulation can be fairly high and as 

a result the simulation step can be very small, which would result in a very large 

data file when simulating drive cycles. To this end, the “Sample Time” setting in 

the block is set to record at 0.1 second interval for drive cycle simulations. The 

reason for this is that the simulation seems to perform better. It can be set to 

smaller steps for testing step changes and stability issues but then simulation 

time needs to be limited to restrict the size of the data log.  
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Chapter Four  

 Power Management Strategy Development 

4.1. Introduction  

From the literature it is clear that the addition of the converter for the battery and 

the UC module add a certain amount of weight without saving enough energy 

from the battery to justify this. Several reasons have been shown: 

 Over dimensioning of the UC to capture all eventualities of acceleration  

 Over dimensioning of the UC converter to achieve maximum acceleration 

without battery support 

This resulted in the driveability being compromised because of increased weight 

or battery limitations. The proposed control strategy aims to reduce the size of 

the battery stack and size of the UC module while allowing for driveability and 

increasing efficiency. 

In Figure 4.2 a power flow of the functional operation of the control strategy is 

shown. The aim of the control strategy at this point is to supplement the power 

demand as seen by the bus without exceeding an arbitrary value for a 

maximum battery current. The figure is divided in zones which explain the 

control principles. 

4.2. Control Strategy Principles 

Zone 1 - The battery is allowed a baseline maximum value at the start, since (as 

shown in the research) this does not affect its capacity or effect. The 

value for Ibat_max will be a controlled variable by the EMS and most 

likely start at zero value. 
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Zone 2 & 7 - Above this baseline the UC module will supplement the demanded 

power. 

Zone 3 - Under cruising conditions the battery will continue to stay at its 

maximum value until the UC voltage has reached its target value then 

the battery current will drop to match the demanded value. As long as 

the target value of the UC SoC has not been achieved the battery will 

keep supplying its maximum value even if the demanded current has 

fallen to zero. 

Zone 4 - Upon a regenerative event the regenerative energy is first collected by 

the UC module. If the UC SoC target has been reached then the 

battery will not supply any more current 

Zone 5 - When the UC SoC has reached its maximum the battery will accept 

any remaining charge  

Zone 6 - If the UC SoC is above its target value and an acceleration event is 

occurring then the UC will first supply the demanded value until target 

SoC is reached after which the battery is allowed to supply up to its 

maximum value.  

The resulting control strategy is shown in Figure 4.1 for the parallel converter 

topology. The difference with the cascaded topology is that the cascaded 

topology adds the signals on electrical connection level and not in reference as 

in the parallel topology. The cascaded topology will not have the subtraction of 

the current signal from the battery reference. The functioning of this control 

strategy is further explained in (Kok et al., 2013b).  
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Figure 4.1: Control Strategy 

 

 

Figure 4.2: Control power flow 

 

Time (s) 
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4.3. Control strategy 

The main features of this control strategy are:  

 The power split is defined as a reference value sent to the battery 

converter and not at the point of current combining such as in battery 

with UC module or the cascaded topology; this ensures the ripple of each 

source is individually controlled 

 The power split decision is made fast and as such allows for a smaller 

bus capacitance by effectively combining the operational and tactical 

levels of control into one. 

 The power split is dependent upon the amount of power available from 

the UC module 

 If power is not available from the UC module the battery can still supply 

the demanded power even if the demanded power exceeds the set 

maximum. This allows for driveability but the occurrence of this event 

should be limited since it negatively affects the battery life time.  

The control strategy is not intended to meet all eventualities but on prolonging 

the batteries’ life without sacrificing driveability, while not increasing the weight 

of the total drive train. For example, continuous acceleration up to 120 km/h can 

be achieved but the final part of the acceleration will not be supported by the 

UC module instead the battery will take over since the UC module will not have 

the energy. The reason for this choice is that the battery should be able to 

support driveability of the vehicle.  



 

  
136 

 
  

4.4. Control limits 

The amount of support the UC Module is providing is set by function (Fcn) 

blocks and limited by saturation (Sat) blocks as shown in Figure 4.1 (page 134) 

and explained here.  

 Fcn1 controls the upper bound of Sat1 and is only closed when the UC is 

depleted. This function block controls the limit of the allowed current 

during acceleration events when Idem > Ibat 

 Fcn2 controls the lower bound of Sat1 and is dependent upon the value 

of the target level SoC of the UC. This function block controls the level of 

UC recharge during cruising conditions. If Ibat_max > Idem and Vuc < Vuc_target 

then the difference between Ibat_max and Idem is used to recharge the UC 

up to Vuc_target. If Vuc > Vuc_target then the function output is 0. The function 

value is set to limit the battery current. The control strategy allows the 

battery to keep supplying current even though a regeneration event is 

taking place. Combined with Fcn4 these two values work together to 

charge the UC to target voltage. 

 Fcn3 controls the upper limit of Sat2 and operates opposite to Fcn2 in 

that when Vuc > Vuc_target the output is the value in the function and 

otherwise the value is zero. This function block is active when the UC is 

above its target value and thus will support the battery even if the Idem < 

Ibat_max. This is useful to ensure that the UC is brought to a level where 

any (at that moment) excess UC SoC is used first.  

 Fnc4 control the lower bounds of the second saturation block (Sat2). The 

sum of Vuc - Vucmax is almost always negative and thus allows for 

regeneration of energy into the UC until the UC is full (Idem < 0). At this 
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moment the battery needs to accept the remaining regeneration energy. 

The “Goto block” sends a signal to the buck converter of the battery (if 

present) to make this happen.  

The saturation blocks are controlled by the output of function blocks. The 

combination of function blocks and limit blocks is to limit jitter effects. Initially the 

difference between Vuc and Vuc_target was measured and based on this difference 

the lower limit of the “Sat1” block was set. But at high currents when the limit is 

set to zero as a result of the difference between the two values going to zero. 

The voltage of the UC is given according to equation (4.1). When the current is 

removed the value of Vuc will drop immediately because the internal resistance 

term is zero with the result that the voltage measured (Vuc) would drop below 

the target voltage (Vuc_target) and the limit would allow charging with high current 

again. To avoid this possibility a slope was introduced in the system. Now, 

when the difference between measured and target approaches zero the current 

is gradually reduced, thus eliminating jitter effects.  

     
 

 
            (4.1) 

The inclusion of the “Saturation” block (Pass>0) is to avoid the following 

situation:  

 

                   

          

           

(4.2) 

As can be seen, in this situation a negative Idem would appear twice at the exit 

and increase the current from the battery. The block is set to block negative 

signals. 
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The upper and lower limits are set by limiting the current as feature of protecting 

the electronics. Otherwise because of the power balance the current could 

potentially increase to unacceptable high levels. 

The limits are defined by the final design for the converter in kW and the lowest 

operating voltage where this maximum power occurs.  

 
    

   
      (4.3) 

    is the voltage level at which the maximum power (Pmax) of the converter is 

required. The point where this maximum power value is required is limited by 

the total power needed. The current limit (    ) is also subject to the efficiency of 

the UC operation as explained in chapter 2. 

As established earlier, the maximum power of the converter has been 

established at 30kW which at a voltage of 23 x 3.6 = 82.8V means a current 

draw of 362A and higher if the voltage drops any further. Thus, under maximum 

power the efficiency of the system is not high enough to warrant its use or the 

system should have a SoC that is near the maximum voltage, which leaves little 

room for energy recovery.  

From this it is clear that combining UC strings in parallel is necessary not only to 

achieve the desired energy available but also for the efficiency of the UC 

operation because the internal resistance of the paralleled UC strings is 

(assumed the internal resistances of each string are the same): 

    
  

 
 (4.4) 

With    the total resistance,    is the individual resistance per string and n is the 

number of strings. The alternative is to increase the voltage level which reduces 

the current, but this would increase the number of cells in series and thus 

complicate the cell management system.  
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4.5. Simulation 

During simulation tests of the control strategy with Topology 3 it was found that 

the difference between the battery reference target current and the battery 

current was significant. The battery current was higher than its target. This 

would result in the system reporting a lower efficiency than might be possible.  

The reason for the difference lies in the power balance equation: with the load 

current as the base reference to determine the contribution of the UC module 

the step down in voltage of the UC is not taken in account.  

The solution to this problem is to rework the PMS to use a power reference: the 

input is replaced with the bus power demand, the limits are set to 30kW and the 

power reference out is converted to a current reference by dividing with the 

appropriate source voltage. This solution is specific to Topology 3. Topology 4 

will be simulated with the current reference because both sources are 

connected and controlled using a Proportional Integral (PI) loop; any mismatch 

in control is automatically corrected. Also, the more variable bus voltage (the 

bus capacitor is very small) compared to the stable battery voltage in Topology 

3 result in instabilities in control since any change at the bus is transferred to 

the control signal 

4.6. Summary 

In this chapter a control strategy has been developed that ensures that each 

energy source is used in an appropriate manner at the correct time in order to 

ensure driveability, battery life and maintaining the size and weight of the 

energy sources within reasonable boundaries set by:          and           . 

The actual values for these parameters will be determined by the Energy 

Management Strategy.  
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Chapter Five  

 Energy Management Strategy Development 

5.1. Introduction 

Since the power management strategy is designed to decide the power split 

based on two variables - the maximum battery current (        ) and the target 

Soc of the UC (          ) – the energy management strategy needs to set the 

values for these limits. The maximum battery current limit defines how much 

support is requested from the UC module. The UC SoC target defines how 

much energy can be recovered from that point and if the target is achieved how 

much acceleration the module can support.  

The aim of the energy management strategy is to maintain a dynamic UC SoC 

and a dynamic current limit to smooth the battery dynamics and achieve 

optimum support from the UC module.  

5.2. Drive Cycles 

Drive cycles are lists of data points, often in 1 second intervals, representing a 

velocity value in time and are used to compare efficiency of PEMS in simulation 

and in the real world. They are useful to compare the efficiencies of different 

power and energy management strategies (Souffran et al., 2012). 

5.3. Markov Chain Analysis 

Knowles et al. (2012b) conducted a driveability study for which data was 

collected from a Mitsubishi iMiev electric vehicle, which was driven along a 

standardised route, see Figure 5.1 (the height of the polygon fence represents 

the speed of the vehicle during that time segment (1 second interval)).  
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The data from this study was analysed by the author and a Markov Chain 

transition matrix was developed. Markov’s Chain’s main property is that its next 

state only depends on the current state and not on its past. 

 

Figure 5.1: Standardised Drive Cycle Route 

The recorded speed in kilometres per hour (km/h) of the 11 participants was 

recorded on a second by second basis. For analysis purposes the speed of 

each individual was rounded to the nearest 5 km/h interval. This data was read 

into Matlab for analysis. The Matlab program examined each column of data 

(each column represents the velocity of a participant during the test) and read 

the next velocity found from start to finish and mark every next velocity in a 

transition matrix to create a Markov Chain, where the rows represent the current 

state (current velocity) and the columns show the transition probability to 

achieve the next state; this is illustrated in equation (5.1). 
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If   is the transition matrix of possibilities then each value of the matrix is the 

probability ( ) on achieving the next state ( ) from the current state ( ) (Souffran 

et al., 2012) 

                   
 (5.1) 

Where: 

                          (5.2) 

In figures this looks like this, where the current and next state are given in km/h.  
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Figure 5.2 shows two plots which show the relation between current state and 

next state with the colour map representing the value of the location at    . In 

the figures the probability of transition from – current state - 125 km/h to – next 

state- 120 km/h equals 1 and there is no transition from 125 km/h to 125 km/h, 

which is caused by the small sample size and the limited top speed of the 

vehicle. There only was 1 person who achieved 125 km/h and that velocity was 

not sustained for longer than 5 seconds.  
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a b 

Figure 5.2: Transition Matrix plot 

a - bar view 

b - top view 

 

Through the use of the transition matrix the probabilities were calculated at 5 

second intervals as shown in Figure 5.3 where a sample collection is shown.  

It can be seen that over time there is a development of maximum value lines 

appearing through the matrix, which indicates that starting –for example- at 

anywhere between 25 and 60 km/h the next velocity will be approximately 45 

km/h. This trend is already visible at 20 seconds.  

From this can be concluded that from an initial velocity the vehicle is likely to 

end up at a different target velocity after a certain amount of time. This 

information will allow us to slowly increase the battery supply over the set period 

of time while the peak demand is dealt with by the UC modules.  

As mentioned in the literature, it is required that the SoC of the UC module is 

controlled in preparation of another acceleration or deceleration event. This 

SoC control on one hand happens through regenerative events and on the 

other hand by increasing the battery power demand, but this needs to be limited 

because any higher power demand than required for cruising conditions looses 

the battery pack valuable energy. 
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While it is clear from Figure 5.3 that the highest probability results in a target 

speed value the probability of achieving that value is dropping fairly quickly – 

from 50% at 5 seconds to 25% at 20 seconds which means that at 20 seconds 

there a 75% chance that this value is not achieved. The effect is of this 

remaining percentage results in a bias towards either a probability of velocity 

reduction or acceleration. Any current state resulting in a lower next state is 

indicative of a braking probability while when the next state is higher this is 

indicative of an acceleration probability. 

  
a b 

  
c d 

Figure 5.3: Probability matrices at different intervals 

a - Probability after 5 seconds  

b - Probability after 20 seconds 

c - Probability after 40 seconds 

d - Probability after 60 seconds 
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In Figure 5.4 graphs are drawn at similar intervals as in Figure 5.3 showing the 

maximum probability and the result of the following Bias equation (5.4).   is the 

interval period in seconds and M the original derived Markov chain matrix. B is a 

vector indicating if the long tail before and after the maximum (highest probable 

next state) is biased towards deceleration or acceleration (positive values for Bij 

equal acceleration, negative values for Bij equal deceleration). This is calculated 

by taking the sum of all the probability values after the location of the maximum 

value and subtracting this from the sum of all probability values before the 

location of the maximum value.  

Within each row the location of the cell with the highest probability value is 

established. Its location is recorded. b is a vector containing integers 

representing the locations of the highest values on each row (the locations with 

the highest probability for the next velocity) and z equals the maximum value for 

j, then:  

   

 
 
 
 
 
 
 
 
 
 
 

    

 

      

     

    

   

    

 

      

     

    

   

 

    

 

      

     

    

    
 
 
 
 
 
 
 
 
 
 

 (5.4) 

Where             

The probability cannot exceed one, which means that each row should combine 

to a total probability of one. This is expressed in equation (5.5). 
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  (5.5) 

B is the Bias vector of the probability matrix at x seconds; it is a measurement 

of difference. The Bias vector indicates whether the remainder of probabilities is 

biased toward braking or towards acceleration. The probability of the Bias is 

shown in Figure 5.4 (Bias towards braking is negative and towards acceleration 

is positive) together with the maximum probability and its next state velocity 

target. If the current state is 40 km/h then the next state after 20 seconds (5d) is 

most likely to be 45 km/h with the probability Bias towards deceleration. Even 

though, the highest probability is showing acceleration is expected there is a 

large Bias towards deceleration.  

Similarly, if the current state indicates 60 km/h then the highest probability for 

the next state indicates a reduction in velocity to 45 km/h (5d), but the Bias now 

is towards acceleration. Through the progression of time intervals (5a-d) it is 

clear that different zones can be identified after 20 seconds: 

 < 20 km/h  

o Here an acceleration event is most probable with the final point of 

acceleration being 50 km/h3. Basically, as long as the velocity 

remains under 20 km/h only the UC module should be active with 

                                            
3
 While the graph shows 45 km/h it is assumed that 50km/h is the real target and that the 5km/h 

reduction is the result of rounding off data. 
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the battery only supporting when the SoC of the UC drops below a 

set point4. 

 20 – 50 km/h 

o The Bias is towards deceleration, which allows the battery‘s 

supplied power to rise over the interval period while the UC 

module provides the peaks; at the end of the 20 second period the 

battery should be supplying the full demand with the UC at its next 

target SoC. 

 50 – 70 km/h 

o The Bias is towards acceleration, but the highest single probable 

outcome is a lower velocity, which indicates that if the battery 

power supply is set to this max value the system is prepared for 

the future since it has the possibility to charge the UC if so 

required while it can supply the battery current on its own. This 

could mean the battery current will be higher than demanded in 

order to charge the UC but will smooth a potential acceleration 

peak if it occurs.  

 70 – 90 km/h 

o The Bias probability is half of the maximum next state probability 

indicating that the moment 90 km/h is reached it is very likely that 

the next state will be at a lower value, again allowing the UC to 

refill the energy lost during this period of acceleration to achieve 

90 km/h. 

 

 

                                            
4
 Since the period of stopping is not quantified in terms of time any time spend at zero velocity 

skews the probabilities at low speed.    
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 90 – 100 km/h  

o The likely event to occur upon arriving at the higher velocities is a 

regenerative event this is clear from the next state values which 

are lower than the initial values. Again, the UC should be readied 

to support acceleration to the next zone, but the need to recharge 

is not as high as at lower velocities. 

 100 – 110 km/h 

o It seems suggested here that the Bias is towards acceleration, but 

this is likely due to the limited events within each drive cycle and 

the limited number of drive cycles. In fact it is likely, that this zone 

is skewed by the effect of the single (probability 100%) of one 

person achieving a velocity greater than 110 km/h.  

 > 110 km/h  

o The original recorded data only shows 1 person achieving a 

velocity above 110 km/h and only for 10 seconds which is likely 

the reason why the Bias is largely towards acceleration. This point 

is enhanced when the time interval is extended to 40 and 60 

seconds as shown in Figure 5.5 from which it will be clear that the 

effect of the single high point in the Markov Chain disappears 

rapidly. 
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a b 

  
c d 

Figure 5.4: Bias and Maximum probability at different intervals 

a - Probability after 5 seconds  

b - Probability after 10 seconds 

c - Probability after 15 seconds 

d - Probability after 20 seconds 

Also, in the iMiev the power from the battery is limited to 49 kW and a 130 km/h 

speed limit. The highest recorded value of power at the moment the peak 

velocity was achieved by this person is shown in Figure 5.6. From this figure it 

will be clear the battery current was limited as a form of protection. The power 

limiting is marked with a circle. The part of the road where this occurs is on a 

downward slope hence it was possible to continue acceleration despite the 

power being limited. 
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a b 

Figure 5.5: Bias and Maximum probability 

a - Probability after 40 seconds  

b - Probability after 60 seconds 

 

 

Figure 5.6: Drive Cycle snap shot 

5.3.1. Discussion 

The power demand as seen by the bus is variable and depends on mass of the 

vehicle, which is variable with the load and number of people as well as with the 

angle of the road surface (incline / decline) and other factors such as weather 

conditions and road surface. The final power demand of a vehicle at a fixed 

cruising velocity is difficult to predict. In the proposed energy management 
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strategy this limitation will be partially filtered as a result of the time interval 

choice. For example, suppose a vehicle is driving 50km/h and hits an incline the 

driver is likely to try and maintain that velocity but the power demand will rise 

requiring an acceleration to achieve this demand with the battery reaching the 

new target power at the end of the new time interval. 

The speed at which the maximum value lines occur are dependent on factors 

such as speed restrictions and the duration that speed is maintained at each 

stretch of road driven during the test. The difference in position of the maximum 

value lines depends on the speed restriction over the different road stretches 

over the whole drive cycle. If there would be a change in speed restriction from 

50km/h to 100km/h then these would likely become two maximum value lines 

as would the speed restrictions at other segments of the route.  

A change from 50km/h (13.89 m/s) to 100 km/h (27.78 m/s) might happen at 

one stretch during the route but would register – depending on acceleration – as 

an increase for different time epochs. In establishing the matrix each speed is 

measured every 5 seconds and there will be more than 1 epoch needed to 

cover this increase at an average 2.68 m/s2 (maximum acceleration in NYCC). 

This acceleration would show up (if it occurred regularly) as a Bias in reaching a 

particular speed over a particular period of time.  

The bias effects caused as a result of the specifics of the route are not 

considered to be an issue for the validation of this approach. It is expected that 

– because the method is not computationally intensive – the algorithm would 

update the matrix all the time and adapt if a change in regular route occurs.  

This algorithm is not expected to be fully optimised for every possible route but 

optimises regularly taken routes. The overall effect is shown later in this thesis 

when the final energy management strategy based on this standardised route is 
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applied to the unrelated NEDC and NYCC drive cycles and shown to provide a 

good efficiency optimisation.  

5.3.2. Conclusion 

Using Markov Chain analysis to analyse drive cycles is done for specific 

vehicles and specific routes (Souffran et al., 2012). Here it is shown that the 

Bias in the probability results is providing information on where braking and 

acceleration events are to be expected. This information will be used to design 

the energy management strategy. 

In summary:  

 the battery current limit should be set to the final power demand of the 

identified zones depending on the current state based on the chosen 

time interval 

o If the first velocity is assumed zero and the time interval chosen is 

20 seconds then the final velocity (and the accompanying power) 

will be set at zero, while when the vehicle has accelerated to 20 

km/h then the battery will be given 20 seconds to rise to the power 

requirements for 30 km/h. 

 The UC module should be sized such that it can support the power 

demand during this time of transition. 

 The target state of charge should reflect the energy remaining in the UC 

which allows acceleration up to the next zone, leaving enough room for 

recovery of all the energy in anticipation of a regenerative event 

 While the control strategy is designed to be able to allow regenerative 

energy to be accepted by the battery the transition from supplying to 

accepting would constitute a ripple and as such is best avoided. 
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5.4. Implementation of the Energy Management Strategy 

5.4.1. The battery maximum current 

In Table 5.1, zone power values based on small vehicle (1200 kg) are given. 

These values have been calculated based on the velocities identified in the 

drive cycle chapter. 

The zones are (illustrated in Figure 5.7 - 5.8) overlaid on the New European 

Drive Cycle (NEDC) and the New York City Cycle (NYCC). From these power 

values the maximum current can be established by dividing the power limit with 

the battery voltage.  

 

 

Figure 5.7: Zone overlay - NEDC 
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Figure 5.8: Zone overlay - NYCC 

 

Table 5.1: Zone Power Values 

Velocity (km/h) 20 50 70 90 100 110 120 

Power at the Bus (W) @ 0% incline 1 744 4 617 8 108 13 492 17 064 21 313 26 309 

 

        

The 20 second time interval was chosen based on the behaviour of the Bias 

curve which had stabilised after this time period (no major changes). It was also 

felt that a longer period would be unrealistic for the UC Module to support. 

Based on the chosen (20 second) interval a filter is designed to simulate the 

slow rise and to serve as a reference for a second by second update of the 

battery power limit.  

A second order Butterworth low-pass filter is chosen of which the generic form 

is given in equation (5.6). The Butterworth filter was chosen because of its flat 

response up to the cut-off frequency. 
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 (5.6) 

Where ω is the cut-off frequency in radians per second and β is the damping’s 

factor. The damping factor is set to 1 which results in a critically damped 

response thus providing a flat response. 

The timing interval is 20 seconds but this is only one quarter of the total 

frequency. The total period for purpose of use to calculate ω is therefore T = 80 

seconds. 

       
  

 
 (5.7) 

5.4.2. UC Module  

For the module to be specified the following needs to be established: 

 Maximum power for the converter 

 Energy requirements of the UC 

From Figure 5.8b it can be seen that the highest acceleration peak of the two 

drive cycles are located at around the 200 second mark, where the maximum 

power demand is around 26 kW, with the acceleration starting at zero velocity 

and without taking any potential battery contribution in account.  

Using Simulink a simulation can be run using power profiles of drive cycles as 

input to the filter. The difference between the power profile and the filter output 

is the power demand the UC module should deal with. The results of these 

simulations are shown in Figure 5.9 - 5.12 from which it is clear that the 

expected maximum power is around ±30kW. An interesting effect the pictures 

are showing is that the ECO positive driver has lower power demand and 

seems to indicate an average almost equally distributed on each side of the 

zero marker, which means that this person would, based on his driving style, 

allow optimum use of peak power shaving technology and as a result the 
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battery would really benefit from the eco driving approach in combination with 

the UC module and PEM strategy.  

 

Figure 5.9: Expected UC Module power demand - NEDC 

 

Figure 5.10: Expected UC Module power demand - NYCC 
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Figure 5.11: Expected UC Module power demand - ECOn 

 

 

Figure 5.12: Expected UC Module power demand - ECOp 
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The energy requirement is dictated in two parts: a) the maximum power peak 

and b) the duration of the peak power demand. The chosen time interval is 20 

seconds which results in an energy rating of 167 Wh (600 kWs).  

The UC type chosen is the lithium-ion capacitor presented in (Lambert et al., 

2010) of which a summary is presented in Table 2.1 in chapter 2.3. Based on 

an operating voltage of 50.60 V and 87.40 V (23 cells in series) with a capacity 

of 95.65 F per string (67.47Wh) and an internal resistance of 32.2mΩ. The 

required capacity would need 2.5 strings; which means 3 strings for a total 

usable energy of: 202 Wh at a capacity of 286.95 Farad and an internal 

resistance of 10.73mΩ. 

The weight cost of this module would be  

   
          

          
                                 (5.8) 

Where            is the maximum power of the converter and            is the 

power density of 5kg/kW. The UC cell used weighs 0.26kg and there are 23 in 

series per string and 3 strings are required. A packaging factor can be added if 

so required. 

5.4.3. The UC target SoC 

The energy recovery ratios range from 30% (Miller, 2004) to 87% (Gao et al., 

1999) via (Carter et al., 2012). According to Zhang et al. (2013a) regenerative 

energy can constitute up to 60% of the overall consumed energy but only in 

start-stop driving cycles. Regenerative braking is also limited by the addition of 

friction brakes and legislation which requires the Anti-lock Braking System 

(ABS) to be in control of the braking torque (Oleksowicz et al., 2013). 
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According to Tie and Tan (2013) the energy recovery rate is limited to 50% 

because of losses in the system; this value has been used to set the UC target 

SoC.  

For each zone the maximum value of recoverable energy has been calculated 

based on its kinetic energy value as per equation (5.9) 

      
 

 
        (5.9) 

Where     = the recoverable energy, M = mass of the vehicle and v is the 

vehicle velocity in meters per second (m/s). The extra factor of 0.5 is the 50% 

recovery rate.  

The resulting energy levels are given in Table 5.2 with the mass of the vehicle 

set to 1200 kg.  

Using the values from Table 5.2 and the equation to calculate UC energy as 

provided in equation (2.2) the corresponding voltage level can be calculated, 

see final column Table 5.2. 

 

Table 5.2: Energy at different velocities 

km/h E available (kJ) E recoverable (kJ) Vuc Target (V) 

0.00 0.00 0.00 87.40 

20.00 18.52 9.26 87.03 

50.00 115.74 57.87 85.06 

70.00 226.85 113.43 82.75 

90.00 375.00 187.50 79.57 

100.00 462.96 231.48 77.62 

110.00 560.19 280.09 75.41 

120.00 666.67 333.33 72.91 
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5.4.4. Summary 

Table 5.3 shows an overview of the target values. The targets for the UC SoC 

are based on the value of filtered power demand which sets the battery 

maximum power. These values will be updated every second. The control for 

this system in Simulink is shown in Figure 5.13. The “Management Timing 

Interval” block outputs a pulse every second from which the derivative is taken 

and only the positive ramp is passed on to the “enabled subsystem”. In this 

way, at the start of every full second the “Enabled Subsystem” is updated. This 

last block contains a “Matlab Function” block which is programmed with a rule 

based strategy to assign the right values. The code can be found in Appendix 6. 

This code also includes a line that avoids the maximum battery power becoming 

negative since this is controlled by the power management level if it is required 

that the battery accepts regenerative energy.  

 

Table 5.3: Control Variables overview 

km/h 
Battery Power 

Limit (W) Vuc Target 

0.00 0 87.40 

20.00 1744 87.03 

50.00 4617 85.06 

70.00 8108 82.75 

90.00 13492 79.57 

100.00 17064 77.62 

110.00 21313 75.41 

120.00 26309 72.91 

 

 

  



 

  
161 

 
  

 

Figure 5.13: Energy Management Simulink Implementation 
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Chapter Six  

 Simulation Results 

6.1. Introduction 

In previous chapters the current literature has been discussed and the different 

aspects for a PEMS have been analysed, which include: choice of topology, 

level of support required from the UC module and the efficiency of the whole 

power and energy elements of the drive train. A new PMS has been developed. 

Through the use of Markov Chain analysis power limits have been established 

as well as a time interval for a filter function culminating in a new PEMS. 

In this chapter the results of different simulations will be discussed. There are 4 

different topologies which are simulated using 4 different drive cycles. The 

results are then processed in a Matlab program for the effects of battery, 

converter and UC efficiency based on the efficiency algorithms established in 

chapter three.  

6.2. Simulation Results 

6.2.1. Topology 1 

Figure 6.1 - 6.4 show the baseline simulations of each drive cycle for this 

topology. These graphs will function as a baseline measurement for the other 

topologies. The battery voltage and current are the bus voltage and current in 

this topology. 
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Figure 6.1: Topology 1 Simulation - Baseline NEDC 

 

 

Figure 6.2: Topology 1 Simulation - Baseline NYCC 
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Figure 6.3: Topology 1 Simulation - Baseline ECOn 

 

 

Figure 6.4: Topology 1 Simulation - Baseline ECOp 
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6.2.2. Topology 2 

The effect of the converter is clearly visible in this topology as a result of the 

increased current demand from the battery, which directly results in a reduced 

battery SoC at the end of the drive cycle (shown in Figure 6.5 - 6.8).  

 

 

Figure 6.5: Topology 2 Simulation - NEDC 
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Figure 6.6: Topology 2 Simulation - NYCC 

 

 

Figure 6.7: Topology 2 Simulation - ECOn 
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Figure 6.8: Topology 2 Simulation - ECOp 
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6.2.3. Topology 3 

The effects on the UC can clearly be seen in the battery current behaviour, 

which is smoother, see Figure 6.9 - 6.12. The SoC is almost similar to Topology 

1. The battery current shows some spikes at the moment of acceleration, these 

are the direct result of the topology: the battery is directly connected to the bus 

and as such will respond first to any change in demand. The control strategy is 

affected by the battery’s direct connection to the bus. On transitions from 

acceleration / cruising to regeneration, initially the battery will see a falling 

demand and will follow this trend because it is directly connected to the bus.  

 

Figure 6.9: Topology 3 Simulation - NEDC 
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Figure 6.10: Topology 3 Simulation - NYCC 

 

Figure 6.11: Topology 3 Simulation - ECOn 
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Figure 6.12: Topology 3 Simulation – ECOp 

 

However, the requirement is to maintain a level that allows the UC to be 

charged to target voltage, but since the motor controller is functioning under 

regenerative conditions – recharging the bus capacitor – the battery will not 

respond. Only when the demand indicates regeneration can the control strategy 

start to demand the battery to assist in charging the UC; this is visible by the 

little dips at the moment the demand is negative. 

6.2.4. Topology 4 

The results in Figure 6.13 - 6.16 shows that the final acceleration of the NEDC 

relies less on direct battery supply. The sharp peak at the end of the NEDC is a 

result of the UC being depleted and the reported limited option for current 

limitation in the simulation: this would be where a limitation might be placed on 

battery current but because of the simulation approach taken this is not 

possible.  
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The ECOp driver provides better recovery of energy as a result of his (or her) 

driving style. The ECOn driver would potentially benefit from the UC module the 

most since the variance shown in the Vuc SoC is greatest, but also has likely the 

highest losses with high current demand at UC SoC below 62.5 V. 

 

 

Figure 6.13: Topology 4 Simulation - NEDC 
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Figure 6.14: Topology 4 Simulation - NYCC 

 

Figure 6.15: Topology 4 Simulation - ECOn 
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Figure 6.16: Topology 4 Simulation – ECOp 

 

6.3. Discussion of the results 

As reported in chapter 3 the efficiencies based on current demand will be 

calculated and then the effective energy used based on these efficiencies will 

be shown.  

Figure 6.17 - 6.20 show the battery efficiency values based on the simulated 

battery current draws. In all situations Topology 2 has the worst efficiency as 

expected. The effect of converter addition (reducing the battery string length) is 

an increase in current and thus a loss of efficiency in current draw from the 

battery (higher current is less efficient) and the loss through converter 

efficiency. The losses as a result of the converter inefficiencies would 

realistically result in an increased current from a battery perspective. It has been 

assumed in these simulations that the effect of the converter inefficiencies on 
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the battery current increase can be neglected compared to the current increase 

as a result of the power balance.  

The next least efficient topology is Topology 1, followed by Topology 4 then 

Topology 3. Interesting to note is that the ECOp driver also clearly shows a 

higher efficiency over all compared to the ECOn driver. 

 

 

Figure 6.17: Battery Efficiency - NEDC 
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Figure 6.18: Battery Efficiency - NYCC 

 

Figure 6.19: Battery Efficiency - ECOn 
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Figure 6.20: Battery Efficiency - ECOp 

 

Shown in Table 6.1 are the calculated energies removed from the battery 

corrected for the inefficiencies based on the current demand. The value 

presented here represents how much energy is used in the different topologies 

with an overall efficiency assumed of 95% for the battery converter. 

Based on these efficiencies Topology 3 is the most efficient (3 out of 4 

topologies) and as a result has used the least amount of energy in each of the 

situations. The results also show that Topology 4 is more efficient than 

Topology 1. The most notable pattern is the direct relation between energy used 

under peak demand and the effect it has on the battery efficiency. The table 

shows all the energy registered from the battery to the bus including energy that 

then continued to be used to charge the UC. Already it can be seen that an 

improvement in overall efficiency is gained despite providing energy to the bus 

as well as charging the UC.  
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Table 6.1: Energy delivered from the battery to the bus (kWh) 

 Topology 1 Topology 2 % Topology 3 % Topology 4 % 

NEDC 1.762 1.871 6.19% 1.573 -10.73% 1.667 -5.39% 

NYCC 0.374 0.383 2.41% 0.293 -21.66% 0.286 -23.53% 

ECOn 2.484 2.651 6.72% 2.000 -19.48% 2.107 -15.18% 

ECOp 1.762 1.841 4.48% 1.384 -21.45% 1.434 -18.62% 

        

Table 6.2 shows the energy recovered from the bus into the battery. This table 

is showing a control issue within Topology 3. While the control is limited to 

maintaining a positive battery current a small amount of energy is still recovered 

into the battery as a result of the ripple effects described in chapter 3.2. While 

this energy does register here as data it probably would not register in the real 

world at all since the ripple duration is much lower than the 2 second duration 

required for our efficiency algorithm and in terms of efficiency it would probably 

not even get close to 60%. The improved control is clearly visible in Topology 4, 

where no current is recovered into the battery indicating no ripple issues. 

Table 6.2: Energy recovered into the battery (Wh) 

 

Topology 1 Topology 2 Topology 3 Topology 4 

NEDC -72.130 -66.131 -0.780 0.00 

NYCC -37.307 -34.130 -0.150 0.00 

ECOn -185.225 -171.731 -5.520 0.00 

ECOp -183.262 -168.152 -17.000 0.00 

     

Since the assumption is made that the UC does not have any energy of its own 

and the efficiency is calculated during the simulation, the efficiency calculated 

as round trip efficiency is shown in equation (3.22), repeated here for 

convenience:  

          
       

  (6.1) 
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Table 6.3 shows the energies recovered into the UC on round trip efficiency. 

The table shows more energy being recovered and discharged by the UC 

module in Topology 4.  

 Table 6.3: Energy recovered into the UC – Top3 and Top 4 (Wh) 

 Topology 3 Topology 4 

NEDC -360.02 -452.01 

NYCC -182.10 -200.00 

ECOn -690.74 -863.48 

ECOp -536.34 -656.91 

   

In Table 6.4 the effective energy as seen by the bus is shown; i.e. the energies 

that have effectively left the battery and the energies that can be used, either 

because they have been saved in the battery or in the UC, are added. Since, 

these efficiencies have been established after the completion of a full drive 

cycle; i.e. the simulations have been successful, the only calculations involve 

the energy supplied by the battery and the energy returned (to battery or UC). 

All efficiencies reported are with the converters at 95% efficiency.  

The percentages reported next to each topology are in relation to the base 

topology (Topology 1). The result of Topology 2 is as expected, extra energy is 

required to travel the same drive cycle. The result is reported to illustrate the 

effect of a non functioning UC module, for example, after prolonged driving at 

cruising conditions the UC module becomes depleted and is effectively only 

additional weight. Topology 3 is the most efficient only for NEDC despite higher 

voltage and less converter losses.  

  



 

  
179 

 
  

Table 6.4: Overall energy expenditure at the bus (kWh) 

 Topology 1 Topology 2 % Topology 3 % Topology 4 % 

NEDC 1.690 1.805 6.81% 1.212 -28.27% 1.215 -28.10% 

NYCC 0.337 0.349 3.62% 0.111 -67.11% 0.086 -74.46% 

ECOn 2.299 2.479 7.85% 1.304 -43.29% 1.244 -45.91% 

ECOp 1.579 1.673 5.96% 0.831 -47.38% 0.777 -50.78% 

        

In Topology 4 there is full control over the two converters, which means that any 

current supplied is fully controlled. Any discrepancies because of losses or 

current increases because of voltage drop are automatically corrected in the 

control loop, which is not possible in topology 3 since the battery current 

responds to a change in bus demand and the control strategy would need to 

compensate for the difference in voltage between the bus and the UC (power 

remains the same). The ripple effect in topology 3 – as reported - will affect 

battery life.  

The higher efficiency of Topology 3 under NEDC seems to indicate that driving 

under highway conditions would significantly decrease the efficiency of the drive 

train when a converter is added as shown by Topology 2, as long as the 

occurrence is rare or not continuous (more city driving than highway driving) 

and the control strategy optimised an improved efficiency can be achieved for 

both Topology 3 and 4.  

The biggest gain for Topology 4 is the improved control and the control over the 

battery current ripple which can be established by setting the inductor current 

ripple. The addition of a filter could solve the ripple issue for Topology 3 but 

introduces extra weight and losses. At the moment, the extra weight has not 

been taken in account; i.e. all topologies are simulated with the same amount of 

weight assumed for the drive train.  
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In Table 6.5 Topology 3 and 4 are directly compared to each other. And the 

efficiency difference with relation to Topology 3 is reported – positive efficiency 

is in favour of Topology 3.  

Table 6.5: Overall energy expenditure comparison between Top3 and Top4 (kWh) 

  Topology 3 Topology 4 % 

NEDC 1.212 1.215 0.23% 

NYCC 0.111 0.086 -22.35% 

ECOn 1.304 1.244 -4.62% 

ECOp 0.831 0.777 -6.45% 

    

6.3.1. ECO negative versus ECO positive 

A comparison between the ECO drivers for all four Topologies is provided in 

Table 6.6. A negative difference indicates improvement for ECOp driver 

compared to ECOn driver within the same topology. A notable observation is 

seen when comparing the performance of ECOp (positive) driving to ECOn 

driving. Whilst the ECOn driver saw an improvement of 4.62% compared to 

Topology 4, the ECOp driver saw 6.45% (see Table 6.5). However, when the 

performance of each driver is compared directly to each other a much larger 

increase of 36.29% for Topology 3 and 37.51% for Topology 4 can be seen.  

This would imply that further improvements can be made with the combination 

of the three: eco driving and the optimised PEM strategy and Topology, 

providing weight is not increased or cost is too high.  

Table 6.6: ECO driving energy expenditure at the bus (kWh) 

  Topology 1 Topology 2 Topology 3 Topology 4 

ECO difference -31.32% -32.53% -36.29% -37.51% 
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6.3.2. Weight / Volume / Cost 

Battery 

Table 6.7 shows details on battery density, volume and pricing. As can be seen 

the online details found could be classed as high power batteries, which 

indicates there is room for adjustments and improvements by using lower power 

but higher energy batteries (letting the UC support the power peaks) and as a 

result reduce the cost of the battery pack further. This point is argued by Miller 

et al. (2009a). 

In the topologies simulated a battery string contained either 30 cells (Topology 1 

and 3) or 25 cells (Topology 2 and 4) which would weigh 93 and 77.5 kg per 

string respectively.  

The final calculation will include three strings in parallel to achieve a more 

realistic battery sized pack. The assumption is made that a 24kWh pack is 

approximately necessary for a vehicle of the proposed size. The paralleling of 

the battery packs will affect the efficiency since the current is effectively divided 

by three.  

                                            
5
 Currency exchange rate $1.68 - £1 – source xe.com (last accessed 05/08/2014) 

Table 6.7: Battery specifications 

 (Lithium Batteries for 
Electric Vehicles, 2014) 

(Tie and Tan, 2013) (Miller et al., 2009a)   

  High 
Energy 

High 
Power 

 

Specific 
Energy 

93 120 200 95 Wh/kg 

Specific 
Volume 

147 220 461 199 Wh/L 

Price per 
kWh5 

486 (140 / cell) 208 298 595 £/kWh 

Capacity 90    Ah 

Cell weight 3.1    Kg 
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Ultra Capacitor  

The UC used in this simulation are based on the Lithium-Ion capacitors from 

Table 2.1. To establish the necessary voltage 23 were placed in series which 

was 12 less (per string) if the equivalent Maxwell cell was used. The final 

comparison is shown in Table 6.8 which shows significant improvement despite 

the higher internal resistance per cell. The price for the Lithium-Ion capacitor 

was established through personal market research and the price range quoted 

was €40-€60 (£32-£48) depending on ordering quantities. In this thesis a low 

quantity was assumed, leaving room for improvements. The price for Maxwell 

ultra capacitors is stated to be between $10-20/Wh for energy or $15-30/kW 

based on power rating (Miller et al., 2009a). 

The choice for the Li-Ion UC is based on its significant weight and volume 

reduction which comes at a cost in operating range. The operating range is less 

important since below a certain value the problems with efficiency increase as 

reported earlier. At high input to output voltage ratio instability also becomes an 

issue. 

                                            
6
 Packaging factor for both weight and volume of 0.7 

7
 Currency exchange rate £1 = €1.25 (last accessed 14/08/2014) 

Table 6.8: Comparison UC string – 3 parallel 

 Li-Ion 2200 Maxwell 2700  

Capacitance 286.95 231.42 F 

Ri  0.0107 0.0105 Ω 

Vmax 87.40 87.50 V 

Vmin 50.60 0 V 

Weight6 25.71 106.77 Kg 

Volume 22.2 88.2 L 

  energy power 

Price7 €60 (£48) / cell 

£3 312 

$2 460 

(£1 429) 

$4 920 

(£2 929) 

$1 350 

(£804) 

$2 700 

(£1 607) 
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Converter 

Ortuzar (2005) estimated the cost for his 45kW converter at around $1200 

(approx £714). Miller (2004) reported a power density of 5kW/kg for a DC-DC 

converter, which is expected to rise to 14.1kW / kg in 2020 (Rosario, 2007). In 

terms of volume (Miller et al., 2009a) expect 25kW/L to be the current norm.  

Based on this data the total mass of the module becomes: 
   

 
             

kg based on the lowest converter density rating with a volume of 
  

  
      

     L and a cost of 714 + 3312 = £4026. The converter for the battery is rated 

at 80 kW (which is equivalent to the motor power of the Nissan Leaf (U.S. 

Department of Energy, 2012). This converter would have a mass of 
  

 
    kg 

and a volume of 
  

  
     L. As a cost indication the value of the UC converter is 

doubled and thus the cost for the battery converter becomes: £1428. The data 

calculated for the different topologies is shown in Table 6.9. 

The final weight of around 300kg for the battery pack would be in line with 

assumptions from other research (Aguirre et al., 2012).  

The value for the volume is high and the main reason for this is the off-the-shelf 

aspect of these batteries versus designed from the cell level up (including 

electronics for monitoring of SoC and temperature) as with the Nissan Leaf 

battery.  

The calculated cost of the battery pack seems to be in the correct region for an 

electric vehicle battery: estimates of the Nissan Leaf battery pack vary between 

£12k and £15k. 
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Table 6.9: Topology Weight, Volume and Cost 

 Topology 1 Topology 2 Topology 3 Topology 4 

Battery      

Weight (kg) 93 77.50 93 77.50 

Volume (L) 58.38 48.65 58.38 48.65 

Price (£)/string 4 200 3 500 4 200 3 500 

Price for 3 strings (£) 12 600 10 500 12 600 10 500 

UC Module89     

Weight   31.71 31.71 

Volume (L)   23.4 23.4 

Price (£)   4026 4026 

Converter battery      

Weight (Kg)  15  15 

Volume (L)  3.2  3.2 

Price (£)  1 428  1 428 

Total Weight (kg)     

3 strings 279 
(25.92kWh) 

247.5 
(21.6kWh) 

310.71 279.21 

Total Volume (L)     

3 strings 175.14 149.15 198.44 172.55 

Total Cost (£) 12 600 11 928 16 626 15 954 

     

6.3.3. Life span improvement 

A full life cycle analysis is beyond the scope of this thesis but the life span of the 

battery pack is one of the most important parts of this analysis because of the 

cost involved. How long the battery pack will last is thus of great importance not 

only from a life cycle analysis but also for resale value of the vehicle. 

In section 2.2.3 Life span (page 18) an average lifespan of 7 years was found. 

In order to achieve a ten year lifespan 43% of the battery pack would need to be 

replaced  
                

       
     . A virtual vehicle lifespan of ten years is chosen 

                                            
8
 The module would add 202Wh extra energy when charged from the wall. 

9
 This includes the converter 



 

  
185 

 
  

since it is felt that the battery development in the next ten years will be such that 

any replacement happening in ten years from now will provide such batteries as 

to be able to last for ten years or longer. It should be noted that in the author’s 

opinion it would prove very difficult to replace only 43% of a battery pack but 

there are arguments that suggest this not unreasonable because of the 

modularity of the battery modules (Aguirre et al., 2012). In practice it is more 

likely that the entire pack would be replaced which makes the cost argument 

even more compelling. However, current convention states that only 43% will 

need replacing so this is the figure used. 

A final simulation was run using repeated drive cycles until a final SoC of 30% 

was registered. In all cases Topology 2 had the shortest runtime. The 

comparison over the different Topologies and drive cycles was done with the 

runtime of Topology 2. An efficiency adjustment was made because the current 

as seen by the full battery pack is now calculated per string (1/3rd of the current 

that the whole pack sees). The battery efficiency results are shown in Table 

6.10, which shows a reduction in battery efficiency compared to Table 6.1.  

Table 6.10: Full battery pack efficiency, repeated drive cycles (kWh) 

  Topology 1 Topology 2 % Topology 3 % Topology 4 % 

NEDC 5.550 5.905 6.40% 5.064 -8.76% 5.332 -3.93% 

NYCC 6.537 6.811 4.19% 5.332 -18.43% 5.443 -16.74% 

ECOn 5.872 6.293 7.17% 4.945 -15.79% 5.345 -8.97% 

ECOp 6.341 6.725 6.06% 5.153 -18.74% 5.398 -14.87% 

        

The overall efficiency results for this simulation are shown in Table 6.11. The 

overall efficiencies are better compared to the single drive cycle approach 

(Table 6.4), which indicates that the UC module over the whole discharge cycle 

has a positive effect on the overall efficiency of the drive train.  
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Table 6.11: Full battery pack, repeated drive cycles, overall efficiency (kWh) 

  Topology 1 Topology 2 % Topology 3 % Topology 4 % 

NEDC 5.122 5.511 7.59% 3.652 -28.71% 3.520 -31.28% 

NYCC 5.357 5.716 6.70% 1.519 -71.64% 1.176 -78.05% 

ECOn 5.013 5.492 9.55% 2.781 -44.53% 2.666 -46.82% 

ECOp 5.129 5.603 9.24% 2.640 -48.53% 2.449 -52.25% 

        

The assumption is made that a vehicle drives on average 20 000 km per year or 

60 km per discharge cycle. This would result in a distance over seven years of 

140 000 km (which is around 2 333 charge / discharge cycles). Table 6.12 

shows the result of the effect that the efficiency increase has on the battery 

energy improvement. If the assumption is made that efficiency improvement 

directly translates to increased km / cycle then the average increase (from a 

battery perspective) over the two topologies (3 & 4) is 72.62 and 66.68 km 

respectively on average, which in turn (based on 2 333 cycles) results in a 

battery improvement to 8.47 years and 7.78 years. This would be from a battery 

only perspective but the battery has been passing charge onto the UC module 

which has not been taken into account yet. 

Table 6.12: Distance per cycle increase based on battery efficiency increase 

  Topology 3 (%) km / cycle Topology 4 (%) km / cycle 

NEDC -8.76% 65.25 -3.93% 62.36 

NYCC -18.43% 71.06 -16.74% 70.04 

ECOn -15.79% 69.47 -8.97% 65.38 

ECOp -18.74% 71.24 -14.87% 68.92 

Average  69.26  66.68 

     

If the efficiency calculation includes the whole system then the average result 

between topology 3 and 4 are: 89.01 and 91.26 km per charge / discharge cycle 
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(Table 6.13), which results in a total driveable distance after 2 333 cycles of 207 

660 km and 212 909 km, which at an average of 20 000 km per year equals 

10.38 and 10.65 years of use. It should be noted that Topology 3 would have 

generally more energy due to the larger battery pack and thus would be able to 

provide energy for further travel.  

Table 6.13: Distance per cycle increase based on overall efficiency increase 

  Topology 3 (%) km / cycle Topology 4 (%) km / cycle 

NEDC -28.71% 77.22 -31.28% 78.77 

NYCC -71.64% 102.99 -78.05% 106.83 

ECOn -44.53% 86.72 -46.82% 88.09 

ECOp -48.53% 89.12 -52.25% 91.35 

Average  89.01  91.26 

     

The calculations are carried out based on the assumption that the efficiency 

directly improves the driving range per charge / discharge cycle and does not 

take in account the effects the increased aging effect as a result of cold / hot 

temperature changes, how often fast chargers are used and the average SoC 

when not in use.  

From a cost perspective – see Table 6.14 -, the implications are that Topology 1 

would see at least part of the battery pack replaced to reach the ten year target, 

which results in a higher cost for the battery pack over a 10 year cycle while 

Topology 3 and 4 result in a lower overall cost with Topology 4 the lowest cost 

over a 10 year duration. 

Although Topology 3 is more efficient it also is heavier, which will reduce its 

efficiency. The efficiency reported here is probably on the high side since the 

weight was not factored into the simulation. Topology 4, although more complex 



 

  
188 

 
  

to setup and control, shows a higher km / cycle improvement than Topology 3 

but at reduced weight and cost.  

Table 6.14: Cost comparison based on efficiency 

 Topology 1 Topology 3 Topology 4 

Initial Purchase Cost £ 12 600 £ 16 626 £ 15 954 

Replaced (43%) £ 5 418 - - 

Total Pack Cost 

(After 10 years) 
£ 18 018 £ 16 626 £ 15 954 

    

6.3.4. Weight adjustment 

As mentioned a potential solution to the ripple effect that the battery sees in 

Topology 3 is the introduction of another inductor which would work together 

with bus capacitance as a filter to smooth the ripple. This will add weight and 

losses to the system reducing its efficiency. The battery operating range 

requires an inverter with a wide operating window which will affect inverter 

efficiency in contrast to the more stable bus voltage in Topology 4 where a 

potential saving can be made on the inverter / motor controller level by 

designing it with tighter tolerances, potentially reducing weight and improving 

efficiency and certainly as reported earlier reducing cost. 
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Chapter Seven  

 Conclusions and Future Research 

7.1. Validate hypothesis 

In this thesis the development of a strategy for the management and control of 

multiple energy sources has been presented as well as the result of this 

development: a novel Power and Energy Management Strategy (PEMS). This 

PEMS has been presented and simulated. The new strategy has proven, in 

simulation, to be very efficient in increasing the life span of the battery by 

increasing the distance driven per charge / discharge cycle. The system has 

proven that driveability has not been reduced and that the system will further 

improve efficiency when adhering to ECO driving rules. The PMS is integrated 

with the Operational Control which increases response times allowing for a 

reduced sized bus capacitor.  

In Table 7.1 the developed Markov Chain EMS is compared to the energy 

management strategies discussed in section 2.10.3 (page 75) and compares 

well against the current state of the art. The effectiveness of the optimisation is 

given a rating on the following scale: H = High, M = Medium, L= low.  

The Markov Chain Analysis allows for a low computational, practical and 

predictive energy management implementation and with the combination of the 

PMS the response rate does not have to be fast. The Markov Chain matrix 

provides a predictive snapshot from which the EMS control parameters can be 

set which allows for reduced capacity design for the UC module in combination 

with reduced power, resulting in a lighter system.  

Different topologies have been researched and discussed:  
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 Topology 3 has improved efficiency compared to Topology 1 but also 

increased cost and weight and requires further investigation in the issues 

of control and adjustment to reduce the ripple effect to avoid increased 

heat generation in the battery. 

 Topology 4 has weight and cost improvement as well as efficiency 

improvements over Topology 3  

 Neither topology sacrifices driveability 

Table 7.1: Comparison of optimisation strategies 
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Stochastic Optimal 
Control 

H  x x  na  offline optimisation only  
and both require a-priory 
knowledge of driving 
aspects Dynamic Programming H x x x  na  

Model Predictive 
Control 

M-H  x x x slow x empirical tuning required 

Drive Cycle Prediction L-M x x x x   highly dependent on 
accuracy of the 
prediction 

equivalent 
consumption 

minimisation strategy 

M-H   x x fast  non predictive 

rule based strategies L     fast  limited to a selected 
number of variables 

Neural Networks M  x x  slow x requires a lot of training 
data for optimal control 
but can be adaptive 

Flexible load demand L     fast  simple but effective 

Markov Chain EMS M  x  no
1
 slow

2
 x  

Comments: 

1. A baseline strategy would not be required but would help in the initial control while the Markov Chain 
matrix is being populated. 

2. The response of the EMS is allowed to be slow since the fast response is dealt with through the PMS. 
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For both topologies, the initial upfront cost is higher than the cost for Topology 1 

but the operating cost over a 10 year life span from a battery perspective is less 

and the range per cycle has been increased which would assist in reducing 

range anxiety.  

A Pugh analysis (Burge, 2013) was applied to the different topologies to see 

which one would be preferred as the best solution to replace Topology 1 

(baseline), based on a limited set of criteria as discussed in this thesis. A full 

explanation of the individual criteria can be found in Appendix 12. 

Table 7.2 shows the outcome of the analysis and shows Topology 4 as the best 

option. The option to design for battery ripple in Topology 4 combined with the 

improvement in efficiency (and range despite a reduced capacity) and the 

possibility for further improvement of the motor controller (in both weight 

(Synthesis Partners LLC, 2011) and efficiency (Estima and Marques Cardoso, 

2012)) without adding weight make it the preferred topology for BEV.  

Table 7.2: Pugh Analysis 

  Capacity Ripple 
control 

weight 10 
year 
cost  

Motor 
controller 

improvement  

Range Efficiency Rating 

Topology 1 S S S S S S S 0 

Topology 2 -1 +1 +1 -1 +1 -1 -1 -2 

Topology 3 S -1 -1 +1 S +1 +1 +1 

Topology 4 -1 +1 S +1 +1 +1 +1 +4 

         

It is known that choice of assessment criteria, the understanding of the criteria 

and the low granularity of the scoring system is a limitation to the Pugh analysis 

(Burge, 2013). The criteria chosen have been discussed and researched in this 

thesis as such the value of the outcome of the analysis is of high quality. 
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However, while the outcome is of significant importance to this thesis it can be 

considered limited to - for example – an Original Equipment Manufacturer. 

The proposed PEMS has been tested and validated against real world driving 

cycles using different topologies and proven to be able to improve efficiency, 

weight, cost and life span as well as further enhance ECO driving behaviour, 

thus proving the hypothesis.  

The PEMS is a practical design that can be implemented in a modular fashion 

and not affect driveability thus support the points 1 and 3 made by Crolla et al 

(2008). Regenerative energy recovery (point 2) while touched on in this thesis is 

supported in the control but as discussed will always require master control 

from the ABS to maintain safe braking conditions. 
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7.2. Future 

The PEMS can be further improved by running the Markov chain analysis as an 

optimisation program while the vehicle is in use and as such further gains can 

be achieved this would require onboard data storage and care must be taken to 

keep the system practical. More research is required here. The power limit 

levels are currently set in a rule based function. An improvement would be to 

expend this through use of a fuzzy logic set. Another improvement would be to 

allow the Bias function to feed the rule based function or the fuzzy logic set. 

Thus including the Markov Chain analysis in the process. 

Using a larger drive cycle set for Markov Chain analysis would allow the EMS to 

be further improved which could lead to a further size reduction and potentially 

power reduction of the UC module. 

Currently all control and simulations are carried out using a current reference 

which from a power limiting (protection of the converter) point of view is not 

ideal. When the input voltage to a converter is falling any demanded power 

requires a rise in current as explained using the power balance equation. 

Suppose, the control strategy is limited at 300A for the UC, which at 80V would 

mean a possible 24kW of power but since the voltage will be falling - for 

example: after a certain amount of time the input only shows 60V then the 

possible power is limited to 18kW. An improved control design would be to 

design for a maximum power use. In that way you could design for 24kW at 

60V, which would limit the current supply at 80V but allows for a more constant 

power delivery. 
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Appendixes 

Appendixes 

Appendix 1 Ultra Capacitor efficiency program 

% internal resistance 

Ri = 0.0014; 

% Cell open circuit voltage 

Uc = 3.6; 

 

% Power range in Watt 

P = 10:10:2000; 

% Current over the power range 

ic = (Uc - realsqrt(Uc^2 - 4*Ri.*P))./(2*Ri); 

% output voltage over the power range 

Uo = Uc-Ri*ic; 

% internal resistance power losses 

Pri = Ri.*ic.^2; 

% output power based on constant current 

Pout = ic.*Uo; 

% temporary holding variable 

Pt = Pri./Pout; 

% efficiency 

eff = 1 ./ (1 + Pt); 

% plot power versus efficiency 

plot(P, eff) 

Appendix 2 Power Converter efficiency program 

clear 

Rds = 11e-3/3;  % 3 mosfets in parallel at 11mOhm each 

RL = 6.12e-3;   % inductor esr 

Vd = 1.5;       % diode voltage 

Vbus = 100;     % bus voltage is constant 

I = 20:20:400;  % Load demand 

Vi = 50; 

i = 1; 

 

d(1,i) = 1-Vi/Vbus;         % Duty cycle 

 

R = Vbus./I;                % load resistance 

IL = Vi./((1-d(1,i))^2.*R); % inductor current 

 

Pconv = I.*Vbus;            % power at the bus 

Pdiode = IL.*Vd;            % diode power consumption 

Pind = RL.*IL.^2;           % inductor power 

Pswitch = Rds.*IL.^2;       % switch power 

% Boost converter losses 

Plosses = Pind + Pswitch.*d(1,i) + Pdiode.*(1-d(1,i)); 
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eff(:,i) = 1 ./ (1 + Plosses ./ Pconv); 

 

% plot 

plot(Pconv./1000,eff); 

legend('Vi(d) = 50(0.5)') 

title('Boost Converter Efficiency plot'); 

xlabel('Power (kW)'); 

ylabel('Efficiency'); 

Appendix 3 Karnaugh map logic 

Since there is the possibility that the reset signal is high at the beginning of the 

period this would mean that the set signal is ignored (the subsystem is reset 

and a reset RS flip flop beginning state is unknown q= 0). To avoid this a little 

karnaugh map was drawn and solved. Effectively there are 3 signals: 1) Set is 

high at the beginning of each period and always requires Q = 1; 2) Reset is high 

always from receiving the reset pulse Q = 0, overwrites Set; Reference is 

established between these values. If the value is larger than 0 than Q = 0 (reset 

= 1, set = 0) and when below 0 then Q remains 1 (reset 0, set = 1). 

Appendix Table 3.1: Karnaugh Map 

Set reference reset S R Q 

0 0 0 0 0 0 

0 0 1 0 1 0 

0 1 0 0 1 0 

0 1 1 0 1 0 

1 0 0 1 0 1 

1 0 1 1 x NA
10

 

1 1 0 1 0 1 

1 1 1 1 x NA 

      

Output result from Karnaugh mapping: 

Set AND Reference OR Reset  

                                            
10

 NA = Since the percentages between set and reset do not overlap these conditions do not 
occur 
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Appendix 4 Input current monitor 

The steady state DC equations are given by: 

 
 

     

  
         

        

(7.1) 

The linearised model for small signal AC is given by:  

 

 
      

  
              

                          

                                             

(7.2) 

  = state vector containing state variables under steady state conditions 

  = state vector independent inputs under steady state conditions 

  = matrix containing the capacitances and inductances of the system 

  = State output vector of dependent signals 

                        are the respective state equations for the different 

operating states.  

        are the respective averaged state equations  

 

The input impedance of the buck converter with the bus capacitance as input is 

derived with the state space averaging technique. The circuit is given in 

Appendix Figure 4.1 and the individual states are given in Appendix Figure 4.2 

and 4.3. 
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Appendix Figure 4.1: Bus Connected Buck Converter 

 

  

Appendix Figure 4.2: Bus Connected Buck 

Converter - ON 

Appendix Figure 4.3: Bus Connected Buck 

Converter - OFF 

 

The state variables are                          . The Input variables are 

      . The output vector is      . Where    is the input current to the switch. 

The matrices are given by: 

     
    
    
   

  (7.3) 

 

ON OFF  

    
    
      
    

      
   
      
    

  (7.4) 

    
   
   
   

      
   
   
   

  (7.5) 

                    (7.6) 
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The averaged matrices are given by:  

 
           

       

(7.7) 

    
    
      
    

  (7.8) 

     
   
   
   

  (7.9) 

          (7.10) 

The steady state equation thus becomes: 

     
    
      
    

   
  

  

 
   

   
   
   

   
   
 
 
  (7.11) 

           
  

  

 
  (7.12) 

The final small AC equation becomes:  

 

 
    
    
   

 
      

  

  
    
      
    

  

      

      

     
   

   
   
   

  
       

 
 

 

   
    
   
   

   
  

  

 
        

(7.13) 

And  

 

                

                       
(7.14) 
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The DC and AC equivalent circuit can now be drawn, see Appendix Figure 4.4. 

 

Appendix Figure 4.4: Buck Converter with Input Capacitor equivalent circuit 

 

To find the input impedance equation the                 and disconnect the 

source. The input impedance equation then becomes:  

     
 

   
   

 

  
        

 

   
  (7.15) 

 

The resulting control setup is shown in Appendix Figure 4.5. 

 

Appendix Figure 4.5: Buck converter control from Bus voltage 
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Appendix 5 Battery Specifications 

Appendix Table 5.1: battery specifications 

CALB SE130AHA   

Nominal Capacity 130 Ah 95wh/kg 

Voltage  Nominal 3.2 V 

 Cut-off charge  3.6 V 

 Cut-of discharge 2.0 V 

Std Discharge current 0.3 CA (39A)  

Std Charge current < 0.3C (39A)  

int. Resistance <0.8 ohm  

weight 4.4kg x 30 132 

price £144 excl vat 

TS-LFP90AHA   

Nominal Capacity 90 Ah 93Wh/kg 

Voltage  Nominal 3.2 V 

 Cut-off charge  3.8 V 

 Cut-off discharge 2.5 V 

Std Discharge current <45A  

Std charge current < 45A  (<20A) suggested 

weight 3.1Kg x 30 93 

price £ 140 excl vat 
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Appendix 6 Energy Management – Enabled Subsystem 

In Appendix Figure 6.1 the enabled subsystem contents is shown. The contents 

of the “Matlab Function is given below. 

 

 

Appendix Figure 6.1: Enabled Subsystem and output port parameters 

function y = fcn(Ifil, Vbus) 

%#codegen 

 

P = Ifil*Vbus; 

 

if Ifil >= 0 

 

    if P <= 1744 

        Vuc_target = 87.40; 

    elseif P <= 4617; 

        Vuc_target = 87.03; 

    elseif P <= 8108 

        Vuc_target = 85.06; 

    elseif P <= 13492 

        Vuc_target = 79.57; 

    elseif P <= 17064 

        Vuc_target = 77.62; 

    elseif P <= 21313 

        Vuc_target = 75.41; 

    else 

        Vuc_target = 72.91; 

    end 

else 

    % ensure input is not negative 

    P = 0; 

    Vuc_target = 87.40; 

end 

 

y = [P, Vuc_target]; 
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Appendix 7 Ripple effects simulation setup 

 

In this appendix the Simulink SPS models are included for the ripple effect 

simulation..   

 

 

Appendix Figure 7.1: Battery + UC module ripple effect simulation 

 



 

  
218 

 
  

 

Appendix Figure 7.2: Cascaded Topology - ripple effect layout 

 

Appendix Figure 7.3: Parallel Topology - ripple effect layout 

 
For the offset simulation the Ramp, Set_Pulse and Reset_Pulse where 

duplicated and offset by 50% of the timing settings (Appendix Figure 7.4). The 

new “Goto blocks” where updated in the “control 2” block. 
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Appendix Figure 7.4: Parallel Topology - ripple effect layout with timing offset 

 
Within this model the Scope outputs a Structure-with-Time of data to the Matlab 

workspace. A Matlab program then retrieves the data and outputs a graph. The 

Matlab code is provided below: 

Retrieve data from the Simulink ScopeData 

T = ScopeData.time; 

Idem = ScopeData.signals(1).values(:,1); 

Ibat = ScopeData.signals(2).values(:,1); 

IL = ScopeData.signals(3).values(:,1); 

PWM  = ScopeData.signals(4).values(:,1); 

Vbat  = ScopeData.signals(5).values(:,1); 

Vuc   = ScopeData.signals(5).values(:,2); 

Plot single picture 

subplot(2,1,1), plot(T,Ibat); 

ylabel('Battery current (A)'); 

 

subplot(2,1,2), plot(T,IL); 

ylabel('UC current (A)'); 

xlabel('time in seconds'); 
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Zoom in at a particular area 

xmin = 0.45; 

xmax = 0.4505; 

i = 0; 

j = 0; 

[steps, ~] = size(T); 

for i = 1:steps-1 

   if T(i) >= xmin 

       a = i; 

       break; 

   end 

end 

for j = i:steps-1 

   if T(j) >= xmax 

       b = j; 

       break; 

   end 

end 

ymin = min(Ibat(a:b,1)) - 5; 

ymax = max(Ibat(a:b,1)) + 5; 

subplot(3,1,1), plot(T,Ibat); 

axis([xmin xmax ymin ymax]) 

ylabel('Battery (A)'); 

 

ymin = min(IL(a:b,1)) - 5; 

ymax = max(IL(a:b,1)) + 5; 

subplot(3,1,2), plot(T,IL); 

axis([xmin xmax ymin ymax]) 

ylabel('UC (A)'); 

 

ymin = -0.25; 

ymax = 1.25; 

subplot(3,1,3), plot(T,PWM); 

axis([xmin xmax ymin ymax]) 

ylabel('PWM'); 

xlabel('time in seconds'); 
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Appendix 8 Power Profile from Drive Cycle – Matlab program 

Read in Drive Cycle 

filename = 'DC_NEDC.txt'; 

M =  dlmread(filename, '\t', 2, 0); 

t = M(:,1); 

v = M(:,2); 

% speed conversion from mph to m/s if needed 

if strcmp(filename,'DC_NYCC.txt') 

    v = 1.609.*v ./3.6; 

end 

% set the duration of the drive cycle 

seconds = length(t); 

Vehicle details are based loosely on a Nissan Micra 

m = 1200;                       % Mass in Kg including full load 

g = 9.81;                       % Gravitational constant m/s^2 

r = 0.266;                      % wheel radius in meters 

% Frr - rolling force 

% Frr = urr*m*g 

urr = 0.015;                    % Rolling coefficient 

Frr = urr*m*g; 

 

% Fad = aerodynamic drag force 

% Fad - drag force include 0.5 

rho = 1.25;                     % air density kg/m^3 

A = 2.08;                       % frontal surface m^2 

Cd = 0.33;                      % drag coefficient based on frontal surface 

% Fhc - hill climbing force 

% Fhc = m*g*sin(alpha) 

% alpha = 2.29 * pi()/ 180;     % 4% incline = 2.29 degree convert to rad 

alpha = 0; 

Fhc = m*g*sin(alpha);           % sine requires radians 

% Fla - lateral acceleration including inertia 

% Fla = m * a * I 

I = 1.05;                       % intertia 

 

% inefficiencies 

Ng = 0.95;          % gear losses 

kc = 0.3;           % motor losses based on 100kW induction motor 

ki = 0.01; 

kw = 5e-6; 

C = 600; 

% gear ratio of manual transmission 

    % Gm = 2.861;     % 1st 

    Gm = 1.562;       % 2nd 

    % Gm = 1.000;     % 3rd 

    % Gm = 0.697;     % 4th 

Gdiff = 4.072;                   % gear ratio of diff 

% final gear ratio 

G = Gm * Gdiff;                  % based on AT final drive ratio 

 

% set the ratio for regenerative braking 
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Regen_ratio = 0.5; 

% average auxiliary power - not used 

Pac = 0; 

 

% create empty arrays 

Xdd = zeros(seconds, 1); 

X = zeros(seconds,1);                % Distance 

Fte = zeros(seconds,1);              % Tractive effort 

W = zeros(seconds,1);                % work 

Pte = zeros(seconds,1);              % Power supplied by the battery 

Pbat = zeros(seconds,1); 

T = zeros(seconds,1); 

omega = zeros(seconds,1); 

Calculate Tractive Effort 

for i = 1:1:seconds-1 

    % Calculate Acceleration 

    Xdd(i) = v(i+1)- v(i); 

    % Calculate distance 

    X(i+1) = v(i)*1 + X(i); 

    % Calculate the lateral force 

    Fla = I*m*Xdd(i); 

    % calculate aero drag based on velocity 

    Fad = 0.5*rho*A*Cd*v(i)^2; 

    % Calculate tractive force 

    Fte(i) = Frr + Fad + Fhc + Fla; 

    Pte(i) = Fte(i) * v(i); %Nm/s 

    omega(i) = G*v(i)/r; % omega of motor in rad/s 

 

    if (omega(i) == 0) %stationary 

        Pte(i) = 0; 

        Pmot_in = 0; 

        T(i) = 0; 

        Nm = 0.5; % eff_mot - dummy value to make sure its not zero 

    elseif (omega(i) ~= 0) % moving 

        if Pte(i) < 0 

            % reduce power if braking since not all will be used by motor 

            Pte(i) = Regen_ratio * Pte(i); 

        end 

        % we now calculate the power at the motor which is different from 

        % the power at the wheel because of the transmission losses 

        if Pte(i) >= 0 

            % motor power > shaft power 

            Pmot_out = Pte(i) / Ng; 

        elseif Pte(i) < 0 

            % motor power diminished when if engine braking 

            Pmot_out = Pte(i) * Ng; 

        end 

 

        T(i) = Pmot_out ./ omega(i); % torque equation 

        % Calculate efficiency based on torque 

        if T(i) > 0 

            Nm = (T(i).*omega(i)) / (T(i).*omega(i) + kc.*T(i).^2 + ki.*omega(i) + 

kw.*omega(i).^3 + C); 

        elseif T < 0 

            Nm = (-T(i).*omega(i)) / (-T(i).*omega(i) + kc.*T(i).^2 + ki.*omega(i) + 

kw.*omega(i).^3 + C); 
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        end 

        % Calculate power at the battery 

        if Pmot_out >= 0 

            Pmot_in = Pmot_out / Nm; 

        elseif Pmot_out < 0 

            Pmot_in = Pmot_out * Nm; 

        end 

    end 

    Pbat(i) = Pmot_in + Pac; 

 

end 

mph = v*3.6/1.609; 

kph = v*3.6; 

Plot Power Profile 

subplot(2,1,1), plot(t, kph), xlabel('time in s') ,ylabel('Velocity (kph)'), grid on 

subplot(2,1,2), plot(t, Pbat), xlabel('time in seconds') ,ylabel('Power (W)'), grid on 

Save Power Profile to File 

saveName = regexprep(filename,'.txt', '_profile.mat'); 

 

p = zeros(2,seconds); 

p(1,:) = transpose(t); 

p(2,:) = transpose(Pbat); 

p(3,:) = transpose(Xdd); 

p(4,:) = transpose(v); 

p(5,:) = transpose(X); 

p(6,:) = transpose(Fte); 

p(7,:) = transpose(T); 

p(8,:) = transpose(omega); 

 

S = struct('Time_S', t, 'Pbat_W', Pbat, 'Acceleration_MpS2', Xdd, 'Speed_MpS', v, ... 

    'Distance_M', X, 'Fte_N', Fte, 'Torque_Nm', T, 'MotorVelo_radpS', omega.''); 

 

save(saveName, '-struct','S', '-mat') 
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Appendix 9 General Simulation setup details 

Battery specifications – There are two types of battery used in these 

simulations. A battery for when the battery is connected directly to the bus, 

which requires a higher voltage and a battery connected to the bus via a 

converter which requires a lower voltage both battery specifications are 

provided in Appendix Figure 9.1 and 9.2. The battery details are based on 

specifications from the TS-LFP90AHA battery (see Appendix 5 - Battery 

Specifications).  

  

Appendix Figure 9.1: Battery specifications - 

bus connected 

 

Appendix Figure 9.2: Battery specifications - 

Converter connected 

 

UC Capacitor specifications – the parameters used for the UC are given in 

Appendix Figure 9.3. 
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Appendix Figure 9.3: UC parameters 

Timing details – within each simulation the following three blocks (Appendix 

Figure 9.4) provide the timing pulses for the different converters. The details for 

each bock are provided in Appendix Figure 9.5. 

 

Appendix Figure 9.4: Converter Timing blocks 
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Ramp 

 
Set Pulse 

 
Reset Pulse 

 

Appendix Figure 9.5: Converter Timing settings 
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Simulation Configuration Parameters – The Simulink Configuration Parameters 

are set to the following (Appendix Figure 9.6) 

 

Appendix Figure 9.6: Simulation Configuration Parameters 

 

For the Matlab graphs used in this document a program was used created by 

Oliver Woodford and can be found at: 

http://www.mathworks.co.uk/matlabcentral/fileexchange/23629-export-fig 

 

The following figures (9.7, 9.8 and 9.9) provide the basic overview of each 

simulation setup in SPS. The use of the “simout” function is similar to the “To 

File” block except that it outputs to the Matlab workspace and is useful if 

interaction with a Matlab script file is necessary. 

http://www.mathworks.co.uk/matlabcentral/fileexchange/23629-export-fig


 

  
228 

 
  

 

Appendix Figure 9.7: Topology 1 – Battery 

 

 

Appendix Figure 9.8: Topology 3 – Battery with UC module 
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Appendix Figure 9.9: Topology 4 – Parallel 
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Appendix 10 Main Program 

Set timing 

clear all; clc; 

% output a time to command window so we know when we started 

c = clock; 

hrs = c(1,4); 

minutes = c(1,5); 

sec = c(1,6); 

fprintf(1, 'Start Time = %2.0f : %2.0f : %2.0f \n', hrs, minutes, sec); 

% Set mail alert specifications 

setMailSpec; % Copyright (c) 2010, Benjamin Kraus 

Load Drive Cycle Power Profile 

DCname = 'NEDC'; 

 

% create the filenames for loading and saving 

s1 = ['DC_',DCname, '_profile.mat']; 

s2 = ['01_',DCname, '_Sim_Time.txt']; 

% Load drive cycle 

M = load(s1); 

 

% prep data for inclusion to workspace 

Time = length(M.Time_S); 

simin = timeseries(M.Pbat_W,M.Time_S); 

Run Simulink program 

pause(1) 

fprintf(1,'Start of Simulation\n' ); 

 

        % Start timer 

        tic; 

        % run the simulation using catch program to alert when crashed 

        varargout = notifier('123adrdress@email.com', @A1_B_C_bus_run, Time); 

        % sim('Battery_Converter_run.mdl',step_time); 

        elapsedTime = toc; 

 

seconds = mod(elapsedTime , 60); 

minutes = fix(elapsedTime / 60); 

hours = fix(minutes / 60); 

minutes = mod(minutes , 60); 

Comment file 

fprintf(1, 'Elapsed Time = %2.0f : %2.0f : %4.3f \n', hours, minutes, seconds); 

fprintf(1, 'Write time to file\n'); 

 

fid = fopen(s2, 'w'); 

fprintf(fid, 'drive cycle time = %5.0f \r\n',Time); 
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fprintf(fid, 'Elapsed Time = %2.0f : %2.0f : %4.3f \r\n', hours, minutes, seconds); 

fprintf(fid, '\r\n'); 

fprintf(fid, '\r\n'); 

fprintf(fid, '\r\n'); 

fprintf(fid, '\r\n'); 

fprintf(fid, '\r\n'); 

fclose(fid); 

 

fprintf(1,'End of Simulation\n' ); 

The Notifier program can be found on the Matlab File Exchange 

http://www.mathworks.co.uk/matlabcentral/fileexchange/28733-notifier 

The notifier function calls the following file: 

function [result] = A1_B_C_bus_run(Time) 

 

sim('A1_B_C_bus.slx',Time); 

result = 1; 

  

http://www.mathworks.co.uk/matlabcentral/fileexchange/28733-notifier
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Appendix 11 Statistic report on the battery tests 

Each column represents a battery with the reported capacity with each 

subheading represents the used discharge current.  

90Ah 

 

130Ah 

22A 

 

22A 

mean 89.504 

 

mean 140.153 

Standard Deviation 3.157 

 

Standard Deviation 0.600 

Confidence interval 3.920 

 

Confidence interval 1.908 

     45A 

 

45A 

mean 88.508 

 

mean 140.173 

Standard Deviation 3.183 

 

Standard Deviation 0.685 

Confidence interval 3.951 

 

Confidence interval 1.090 

     90A 

 

90A 

mean 87.852 

 

mean 140.000 

Standard Deviation 3.675 

 

Standard Deviation 0.648 

Confidence interval 4.562 

 

Confidence interval 1.031 

     135A 

 

135A 

mean 87.074 

 

mean 139.915 

Standard Deviation 3.794 

 

Standard Deviation 0.688 

Confidence interval 4.710 

 

Confidence interval 1.094 

     180A 

 

180A 

mean 86.122 
 

mean 139.618 

Standard Deviation 3.682 
 

Standard Deviation 0.728 

Confidence interval 4.571 
 

Confidence interval 1.158 

     Confidence interval based on T distribution 

t distribution value 95% 2.776 

 

t distribution value 95% 3.182 

Degrees of Freedom 4 

 

Degrees of Freedom 3 
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Appendix 12 Pugh Analysis selection criteria discussion 

 

For the Pugh analysis the following assessment criteria have been defined:  

 capacity – more capacity (a larger pack) is better; the limited amount of 

energy the UC Module could add is ignored 

 ripple control – if the system requires additional ripple control this is a 

negative point  

 weight – a higher weight than the baseline is negative  

 10 year cost – a cost improvement after 10 years is positive 

 Motor controller improvement – an efficiency improvement of the energy 

through the motor controller is positive 

 Range – an improvement in range is positive 

 Efficiency – an improvement in efficiency is positive  

The latter two criteria are similar but different in that an increase in capacity 

could give improved range but because of the increased weight also reduced 

efficiency, showing one of the limitations of the analysis method (the interlinking 

between criteria). 
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